Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex

Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2014-08, Vol.158 (5), p.1123-1135
Hauptverfasser: Erzberger, Jan P., Stengel, Florian, Pellarin, Riccardo, Zhang, Suyang, Schaefer, Tanja, Aylett, Christopher H.S., Cimermančič, Peter, Boehringer, Daniel, Sali, Andrej, Aebersold, Ruedi, Ban, Nenad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1135
container_issue 5
container_start_page 1123
container_title Cell
container_volume 158
creator Erzberger, Jan P.
Stengel, Florian
Pellarin, Riccardo
Zhang, Suyang
Schaefer, Tanja
Aylett, Christopher H.S.
Cimermančič, Peter
Boehringer, Daniel
Sali, Andrej
Aebersold, Ruedi
Ban, Nenad
description Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA. [Display omitted] •X-ray structures of major yeast eIF3 components and subcomplexes•Crosslinking coupled to mass-spectrometry analysis of 40S⋅eIF1⋅eIF3 complex•Integrative modeling reveals architecture of 40S⋅eIF1⋅eIF3 complex A hybrid approach drawing on X-ray structures, crosslinking coupled to mass spectrometry, electron microscopy, and integrative modeling yields mechanistic insights into how eIF3 coordinates translation initiation.
doi_str_mv 10.1016/j.cell.2014.07.044
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4151992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867414009982</els_id><sourcerecordid>2000220139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4694-51aecf002b9c13036aa3686e725f6486a336ec38122024ed3cdb4e20fce8ec703</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokPhBVigLNkk3Ou_JBJCqkYURmrpgrK2PM4N41EmHuykggdgxVvyJCRKqcqGrq4ln3N8fT7GXiIUCKjf7AtHXVdwQFlAWYCUj9gKoS5ziSV_zFYANc8rXcoT9iylPQBUSqmn7IQrLFEiX7FPl6EjN3Y2ZmfR7fxAbhgjZaHNhh1lEj7__vWTNue4DJFdR9unzg4-9Nmm94NfjutwOHb0_Tl70tou0Yvbecq-nL-_Xn_ML64-bNZnF7mTupa5QkuuBeDb2qEAoa0VutJUctVqWWkrhCYnKuQcuKRGuGYriUPrqCJXgjhl75bc47g9UOOoH6LtzDH6g40_TLDe_HvT-535Gm6MRIV1zaeA17cBMXwbKQ3m4NNcp-0pjMnwqazpcRT1g1JUqlIchZylfJG6GFKK1N5thGBmZmZvZqeZmRkozcRsMr26_5c7y19Ik-DtIqCp0RtP0STnqXfU-DjhMk3w_8v_A9zTqRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558521349</pqid></control><display><type>article</type><title>Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Erzberger, Jan P. ; Stengel, Florian ; Pellarin, Riccardo ; Zhang, Suyang ; Schaefer, Tanja ; Aylett, Christopher H.S. ; Cimermančič, Peter ; Boehringer, Daniel ; Sali, Andrej ; Aebersold, Ruedi ; Ban, Nenad</creator><creatorcontrib>Erzberger, Jan P. ; Stengel, Florian ; Pellarin, Riccardo ; Zhang, Suyang ; Schaefer, Tanja ; Aylett, Christopher H.S. ; Cimermančič, Peter ; Boehringer, Daniel ; Sali, Andrej ; Aebersold, Ruedi ; Ban, Nenad</creatorcontrib><description>Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA. [Display omitted] •X-ray structures of major yeast eIF3 components and subcomplexes•Crosslinking coupled to mass-spectrometry analysis of 40S⋅eIF1⋅eIF3 complex•Integrative modeling reveals architecture of 40S⋅eIF1⋅eIF3 complex A hybrid approach drawing on X-ray structures, crosslinking coupled to mass spectrometry, electron microscopy, and integrative modeling yields mechanistic insights into how eIF3 coordinates translation initiation.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2014.07.044</identifier><identifier>PMID: 25171412</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; crosslinking ; Crystallography, X-Ray ; Dimerization ; electron microscopy ; Eukaryotic Initiation Factor-1 - chemistry ; Eukaryotic Initiation Factor-1 - metabolism ; Eukaryotic Initiation Factor-3 - chemistry ; Eukaryotic Initiation Factor-3 - metabolism ; Hepacivirus - chemistry ; hepatitis C ; Humans ; mammals ; Mammals - metabolism ; mass spectrometry ; messenger RNA ; Microscopy, Electron ; Models, Molecular ; Molecular Sequence Data ; Peptide Chain Initiation, Translational ; protein subunits ; Ribonucleoproteins - chemistry ; ribosomal proteins ; Ribosome Subunits, Small, Eukaryotic - chemistry ; Ribosome Subunits, Small, Eukaryotic - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Alignment ; translation (genetics) ; X-radiation ; yeasts</subject><ispartof>Cell, 2014-08, Vol.158 (5), p.1123-1135</ispartof><rights>2014 The Authors</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2014 The Authors. Published by Elsevier Inc. 2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4694-51aecf002b9c13036aa3686e725f6486a336ec38122024ed3cdb4e20fce8ec703</citedby><cites>FETCH-LOGICAL-c4694-51aecf002b9c13036aa3686e725f6486a336ec38122024ed3cdb4e20fce8ec703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0092867414009982$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25171412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Erzberger, Jan P.</creatorcontrib><creatorcontrib>Stengel, Florian</creatorcontrib><creatorcontrib>Pellarin, Riccardo</creatorcontrib><creatorcontrib>Zhang, Suyang</creatorcontrib><creatorcontrib>Schaefer, Tanja</creatorcontrib><creatorcontrib>Aylett, Christopher H.S.</creatorcontrib><creatorcontrib>Cimermančič, Peter</creatorcontrib><creatorcontrib>Boehringer, Daniel</creatorcontrib><creatorcontrib>Sali, Andrej</creatorcontrib><creatorcontrib>Aebersold, Ruedi</creatorcontrib><creatorcontrib>Ban, Nenad</creatorcontrib><title>Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex</title><title>Cell</title><addtitle>Cell</addtitle><description>Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA. [Display omitted] •X-ray structures of major yeast eIF3 components and subcomplexes•Crosslinking coupled to mass-spectrometry analysis of 40S⋅eIF1⋅eIF3 complex•Integrative modeling reveals architecture of 40S⋅eIF1⋅eIF3 complex A hybrid approach drawing on X-ray structures, crosslinking coupled to mass spectrometry, electron microscopy, and integrative modeling yields mechanistic insights into how eIF3 coordinates translation initiation.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>crosslinking</subject><subject>Crystallography, X-Ray</subject><subject>Dimerization</subject><subject>electron microscopy</subject><subject>Eukaryotic Initiation Factor-1 - chemistry</subject><subject>Eukaryotic Initiation Factor-1 - metabolism</subject><subject>Eukaryotic Initiation Factor-3 - chemistry</subject><subject>Eukaryotic Initiation Factor-3 - metabolism</subject><subject>Hepacivirus - chemistry</subject><subject>hepatitis C</subject><subject>Humans</subject><subject>mammals</subject><subject>Mammals - metabolism</subject><subject>mass spectrometry</subject><subject>messenger RNA</subject><subject>Microscopy, Electron</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Peptide Chain Initiation, Translational</subject><subject>protein subunits</subject><subject>Ribonucleoproteins - chemistry</subject><subject>ribosomal proteins</subject><subject>Ribosome Subunits, Small, Eukaryotic - chemistry</subject><subject>Ribosome Subunits, Small, Eukaryotic - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>translation (genetics)</subject><subject>X-radiation</subject><subject>yeasts</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokPhBVigLNkk3Ou_JBJCqkYURmrpgrK2PM4N41EmHuykggdgxVvyJCRKqcqGrq4ln3N8fT7GXiIUCKjf7AtHXVdwQFlAWYCUj9gKoS5ziSV_zFYANc8rXcoT9iylPQBUSqmn7IQrLFEiX7FPl6EjN3Y2ZmfR7fxAbhgjZaHNhh1lEj7__vWTNue4DJFdR9unzg4-9Nmm94NfjutwOHb0_Tl70tou0Yvbecq-nL-_Xn_ML64-bNZnF7mTupa5QkuuBeDb2qEAoa0VutJUctVqWWkrhCYnKuQcuKRGuGYriUPrqCJXgjhl75bc47g9UOOoH6LtzDH6g40_TLDe_HvT-535Gm6MRIV1zaeA17cBMXwbKQ3m4NNcp-0pjMnwqazpcRT1g1JUqlIchZylfJG6GFKK1N5thGBmZmZvZqeZmRkozcRsMr26_5c7y19Ik-DtIqCp0RtP0STnqXfU-DjhMk3w_8v_A9zTqRQ</recordid><startdate>20140828</startdate><enddate>20140828</enddate><creator>Erzberger, Jan P.</creator><creator>Stengel, Florian</creator><creator>Pellarin, Riccardo</creator><creator>Zhang, Suyang</creator><creator>Schaefer, Tanja</creator><creator>Aylett, Christopher H.S.</creator><creator>Cimermančič, Peter</creator><creator>Boehringer, Daniel</creator><creator>Sali, Andrej</creator><creator>Aebersold, Ruedi</creator><creator>Ban, Nenad</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140828</creationdate><title>Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex</title><author>Erzberger, Jan P. ; Stengel, Florian ; Pellarin, Riccardo ; Zhang, Suyang ; Schaefer, Tanja ; Aylett, Christopher H.S. ; Cimermančič, Peter ; Boehringer, Daniel ; Sali, Andrej ; Aebersold, Ruedi ; Ban, Nenad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4694-51aecf002b9c13036aa3686e725f6486a336ec38122024ed3cdb4e20fce8ec703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>crosslinking</topic><topic>Crystallography, X-Ray</topic><topic>Dimerization</topic><topic>electron microscopy</topic><topic>Eukaryotic Initiation Factor-1 - chemistry</topic><topic>Eukaryotic Initiation Factor-1 - metabolism</topic><topic>Eukaryotic Initiation Factor-3 - chemistry</topic><topic>Eukaryotic Initiation Factor-3 - metabolism</topic><topic>Hepacivirus - chemistry</topic><topic>hepatitis C</topic><topic>Humans</topic><topic>mammals</topic><topic>Mammals - metabolism</topic><topic>mass spectrometry</topic><topic>messenger RNA</topic><topic>Microscopy, Electron</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Peptide Chain Initiation, Translational</topic><topic>protein subunits</topic><topic>Ribonucleoproteins - chemistry</topic><topic>ribosomal proteins</topic><topic>Ribosome Subunits, Small, Eukaryotic - chemistry</topic><topic>Ribosome Subunits, Small, Eukaryotic - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>translation (genetics)</topic><topic>X-radiation</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erzberger, Jan P.</creatorcontrib><creatorcontrib>Stengel, Florian</creatorcontrib><creatorcontrib>Pellarin, Riccardo</creatorcontrib><creatorcontrib>Zhang, Suyang</creatorcontrib><creatorcontrib>Schaefer, Tanja</creatorcontrib><creatorcontrib>Aylett, Christopher H.S.</creatorcontrib><creatorcontrib>Cimermančič, Peter</creatorcontrib><creatorcontrib>Boehringer, Daniel</creatorcontrib><creatorcontrib>Sali, Andrej</creatorcontrib><creatorcontrib>Aebersold, Ruedi</creatorcontrib><creatorcontrib>Ban, Nenad</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erzberger, Jan P.</au><au>Stengel, Florian</au><au>Pellarin, Riccardo</au><au>Zhang, Suyang</au><au>Schaefer, Tanja</au><au>Aylett, Christopher H.S.</au><au>Cimermančič, Peter</au><au>Boehringer, Daniel</au><au>Sali, Andrej</au><au>Aebersold, Ruedi</au><au>Ban, Nenad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2014-08-28</date><risdate>2014</risdate><volume>158</volume><issue>5</issue><spage>1123</spage><epage>1135</epage><pages>1123-1135</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA. [Display omitted] •X-ray structures of major yeast eIF3 components and subcomplexes•Crosslinking coupled to mass-spectrometry analysis of 40S⋅eIF1⋅eIF3 complex•Integrative modeling reveals architecture of 40S⋅eIF1⋅eIF3 complex A hybrid approach drawing on X-ray structures, crosslinking coupled to mass spectrometry, electron microscopy, and integrative modeling yields mechanistic insights into how eIF3 coordinates translation initiation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25171412</pmid><doi>10.1016/j.cell.2014.07.044</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2014-08, Vol.158 (5), p.1123-1135
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4151992
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amino Acid Sequence
Animals
crosslinking
Crystallography, X-Ray
Dimerization
electron microscopy
Eukaryotic Initiation Factor-1 - chemistry
Eukaryotic Initiation Factor-1 - metabolism
Eukaryotic Initiation Factor-3 - chemistry
Eukaryotic Initiation Factor-3 - metabolism
Hepacivirus - chemistry
hepatitis C
Humans
mammals
Mammals - metabolism
mass spectrometry
messenger RNA
Microscopy, Electron
Models, Molecular
Molecular Sequence Data
Peptide Chain Initiation, Translational
protein subunits
Ribonucleoproteins - chemistry
ribosomal proteins
Ribosome Subunits, Small, Eukaryotic - chemistry
Ribosome Subunits, Small, Eukaryotic - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Sequence Alignment
translation (genetics)
X-radiation
yeasts
title Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A48%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Architecture%20of%20the%2040S%E2%8B%85eIF1%E2%8B%85eIF3%20Translation%20Initiation%20Complex&rft.jtitle=Cell&rft.au=Erzberger,%20Jan%C2%A0P.&rft.date=2014-08-28&rft.volume=158&rft.issue=5&rft.spage=1123&rft.epage=1135&rft.pages=1123-1135&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2014.07.044&rft_dat=%3Cproquest_pubme%3E2000220139%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558521349&rft_id=info:pmid/25171412&rft_els_id=S0092867414009982&rfr_iscdi=true