Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins

Summary In Rhizobium leguminosarum bv. viciae, quorum‐sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)‐dependent assay of rhizobial attachment to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2014-08, Vol.93 (3), p.464-478
Hauptverfasser: Frederix, Marijke, Edwards, Anne, Swiderska, Anna, Stanger, Andrew, Karunakaran, Ramakrishnan, Williams, Alan, Abbruscato, Pamela, Sanchez‐Contreras, Maria, Poole, Philip S., Downie, J. Allan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue 3
container_start_page 464
container_title Molecular microbiology
container_volume 93
creator Frederix, Marijke
Edwards, Anne
Swiderska, Anna
Stanger, Andrew
Karunakaran, Ramakrishnan
Williams, Alan
Abbruscato, Pamela
Sanchez‐Contreras, Maria
Poole, Philip S.
Downie, J. Allan
description Summary In Rhizobium leguminosarum bv. viciae, quorum‐sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)‐dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out‐competed wild‐type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR‐mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots.
doi_str_mv 10.1111/mmi.12670
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4149787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560107925</sourcerecordid><originalsourceid>FETCH-LOGICAL-j4680-f6998a3e9411fccbe633474cb0b83ab8c1013c2247da65077e62a50c81fdbeb43</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEokNhwQsgS2xYMK3_E2-QUFWgUkdIFUjsLMe5mfEotoOdDExfhNfFdIYKWOGNf-6nc4_tU1XPCT4jZZx7784IlTV-UC0Ik2JJlWgeVgusBF6yhn45qZ7kvMWYMCzZ4-qEcsWp4HJR_VjNk5lcDCj2aEzmBrmAbjbuNrZu9miA9exdiNmksoOwMcFCRinGCbUu9m7w-TVyfkxx58IahdjNw0HPRj_C5Ca3gwA5o3ZfpG0Ck6FD8H1M5fDY10yTsRsPYSoW4gQu5KfVo94MGZ4d59Pq87vLTxcfltcf319dvL1ebrls8LKXSjWGgeKE9Na2IBnjNbctbhtm2saScmdLKa87IwWua5DUCGwb0ncttJydVm8OuuPceuhs8ZDMoMfkvEl7HY3Tf1eC2-h13GlOuKqbugi8Ogqk-HWGPGnvsoVhMAHinDUREhNcKyr-A-Wq-CekKejLf9BtnFMoL1EoQZSkVMhCvfjT_L3r399bgPMD8M0NsL-vE6x_5UaX3Oi73OjV6upuwX4CUje52A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551962256</pqid></control><display><type>article</type><title>Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins</title><source>MEDLINE</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Frederix, Marijke ; Edwards, Anne ; Swiderska, Anna ; Stanger, Andrew ; Karunakaran, Ramakrishnan ; Williams, Alan ; Abbruscato, Pamela ; Sanchez‐Contreras, Maria ; Poole, Philip S. ; Downie, J. Allan</creator><creatorcontrib>Frederix, Marijke ; Edwards, Anne ; Swiderska, Anna ; Stanger, Andrew ; Karunakaran, Ramakrishnan ; Williams, Alan ; Abbruscato, Pamela ; Sanchez‐Contreras, Maria ; Poole, Philip S. ; Downie, J. Allan</creatorcontrib><description>Summary In Rhizobium leguminosarum bv. viciae, quorum‐sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)‐dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out‐competed wild‐type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR‐mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.12670</identifier><identifier>PMID: 24942546</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacteria ; Bacterial proteins ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biofilms - growth &amp; development ; Gene Expression Regulation, Bacterial ; Genes ; Mannans - metabolism ; Microarray Analysis ; Molecular biology ; Mutation ; Operon ; Pisum sativum - microbiology ; Pisum sativum - physiology ; Plant Root Nodulation ; Plant Roots - microbiology ; Polysaccharides, Bacterial - physiology ; Promoter Regions, Genetic ; Rhizobium leguminosarum ; Rhizobium leguminosarum - genetics ; Rhizobium leguminosarum - growth &amp; development ; Rhizobium leguminosarum - physiology ; Symbiosis ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Molecular microbiology, 2014-08, Vol.93 (3), p.464-478</ispartof><rights>2014 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2014 The Authors. Molecular Microbiology published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Aug 2014</rights><rights>2014 The Authors. published by John Wiley &amp; Sons Ltd. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.12670$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.12670$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24942546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frederix, Marijke</creatorcontrib><creatorcontrib>Edwards, Anne</creatorcontrib><creatorcontrib>Swiderska, Anna</creatorcontrib><creatorcontrib>Stanger, Andrew</creatorcontrib><creatorcontrib>Karunakaran, Ramakrishnan</creatorcontrib><creatorcontrib>Williams, Alan</creatorcontrib><creatorcontrib>Abbruscato, Pamela</creatorcontrib><creatorcontrib>Sanchez‐Contreras, Maria</creatorcontrib><creatorcontrib>Poole, Philip S.</creatorcontrib><creatorcontrib>Downie, J. Allan</creatorcontrib><title>Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary In Rhizobium leguminosarum bv. viciae, quorum‐sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)‐dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out‐competed wild‐type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR‐mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots.</description><subject>Bacteria</subject><subject>Bacterial proteins</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biofilms - growth &amp; development</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Mannans - metabolism</subject><subject>Microarray Analysis</subject><subject>Molecular biology</subject><subject>Mutation</subject><subject>Operon</subject><subject>Pisum sativum - microbiology</subject><subject>Pisum sativum - physiology</subject><subject>Plant Root Nodulation</subject><subject>Plant Roots - microbiology</subject><subject>Polysaccharides, Bacterial - physiology</subject><subject>Promoter Regions, Genetic</subject><subject>Rhizobium leguminosarum</subject><subject>Rhizobium leguminosarum - genetics</subject><subject>Rhizobium leguminosarum - growth &amp; development</subject><subject>Rhizobium leguminosarum - physiology</subject><subject>Symbiosis</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqNks1u1DAUhSMEokNhwQsgS2xYMK3_E2-QUFWgUkdIFUjsLMe5mfEotoOdDExfhNfFdIYKWOGNf-6nc4_tU1XPCT4jZZx7784IlTV-UC0Ik2JJlWgeVgusBF6yhn45qZ7kvMWYMCzZ4-qEcsWp4HJR_VjNk5lcDCj2aEzmBrmAbjbuNrZu9miA9exdiNmksoOwMcFCRinGCbUu9m7w-TVyfkxx58IahdjNw0HPRj_C5Ca3gwA5o3ZfpG0Ck6FD8H1M5fDY10yTsRsPYSoW4gQu5KfVo94MGZ4d59Pq87vLTxcfltcf319dvL1ebrls8LKXSjWGgeKE9Na2IBnjNbctbhtm2saScmdLKa87IwWua5DUCGwb0ncttJydVm8OuuPceuhs8ZDMoMfkvEl7HY3Tf1eC2-h13GlOuKqbugi8Ogqk-HWGPGnvsoVhMAHinDUREhNcKyr-A-Wq-CekKejLf9BtnFMoL1EoQZSkVMhCvfjT_L3r399bgPMD8M0NsL-vE6x_5UaX3Oi73OjV6upuwX4CUje52A</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Frederix, Marijke</creator><creator>Edwards, Anne</creator><creator>Swiderska, Anna</creator><creator>Stanger, Andrew</creator><creator>Karunakaran, Ramakrishnan</creator><creator>Williams, Alan</creator><creator>Abbruscato, Pamela</creator><creator>Sanchez‐Contreras, Maria</creator><creator>Poole, Philip S.</creator><creator>Downie, J. Allan</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7T7</scope><scope>5PM</scope></search><sort><creationdate>201408</creationdate><title>Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins</title><author>Frederix, Marijke ; Edwards, Anne ; Swiderska, Anna ; Stanger, Andrew ; Karunakaran, Ramakrishnan ; Williams, Alan ; Abbruscato, Pamela ; Sanchez‐Contreras, Maria ; Poole, Philip S. ; Downie, J. Allan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j4680-f6998a3e9411fccbe633474cb0b83ab8c1013c2247da65077e62a50c81fdbeb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacteria</topic><topic>Bacterial proteins</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biofilms - growth &amp; development</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Mannans - metabolism</topic><topic>Microarray Analysis</topic><topic>Molecular biology</topic><topic>Mutation</topic><topic>Operon</topic><topic>Pisum sativum - microbiology</topic><topic>Pisum sativum - physiology</topic><topic>Plant Root Nodulation</topic><topic>Plant Roots - microbiology</topic><topic>Polysaccharides, Bacterial - physiology</topic><topic>Promoter Regions, Genetic</topic><topic>Rhizobium leguminosarum</topic><topic>Rhizobium leguminosarum - genetics</topic><topic>Rhizobium leguminosarum - growth &amp; development</topic><topic>Rhizobium leguminosarum - physiology</topic><topic>Symbiosis</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frederix, Marijke</creatorcontrib><creatorcontrib>Edwards, Anne</creatorcontrib><creatorcontrib>Swiderska, Anna</creatorcontrib><creatorcontrib>Stanger, Andrew</creatorcontrib><creatorcontrib>Karunakaran, Ramakrishnan</creatorcontrib><creatorcontrib>Williams, Alan</creatorcontrib><creatorcontrib>Abbruscato, Pamela</creatorcontrib><creatorcontrib>Sanchez‐Contreras, Maria</creatorcontrib><creatorcontrib>Poole, Philip S.</creatorcontrib><creatorcontrib>Downie, J. Allan</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frederix, Marijke</au><au>Edwards, Anne</au><au>Swiderska, Anna</au><au>Stanger, Andrew</au><au>Karunakaran, Ramakrishnan</au><au>Williams, Alan</au><au>Abbruscato, Pamela</au><au>Sanchez‐Contreras, Maria</au><au>Poole, Philip S.</au><au>Downie, J. Allan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2014-08</date><risdate>2014</risdate><volume>93</volume><issue>3</issue><spage>464</spage><epage>478</epage><pages>464-478</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary In Rhizobium leguminosarum bv. viciae, quorum‐sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)‐dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out‐competed wild‐type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR‐mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>24942546</pmid><doi>10.1111/mmi.12670</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2014-08, Vol.93 (3), p.464-478
issn 0950-382X
1365-2958
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4149787
source MEDLINE; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Bacteria
Bacterial proteins
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biofilms - growth & development
Gene Expression Regulation, Bacterial
Genes
Mannans - metabolism
Microarray Analysis
Molecular biology
Mutation
Operon
Pisum sativum - microbiology
Pisum sativum - physiology
Plant Root Nodulation
Plant Roots - microbiology
Polysaccharides, Bacterial - physiology
Promoter Regions, Genetic
Rhizobium leguminosarum
Rhizobium leguminosarum - genetics
Rhizobium leguminosarum - growth & development
Rhizobium leguminosarum - physiology
Symbiosis
Transcription Factors - genetics
Transcription Factors - metabolism
title Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutation%20of%20praR%20in%20Rhizobium%20leguminosarum%20enhances%20root%20biofilms,%20improving%20nodulation%20competitiveness%20by%20increased%20expression%20of%20attachment%20proteins&rft.jtitle=Molecular%20microbiology&rft.au=Frederix,%20Marijke&rft.date=2014-08&rft.volume=93&rft.issue=3&rft.spage=464&rft.epage=478&rft.pages=464-478&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.12670&rft_dat=%3Cproquest_pubme%3E1560107925%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551962256&rft_id=info:pmid/24942546&rfr_iscdi=true