Isolation of rare recombinants without using selectable markers for one-step seamless BAC mutagenesis

Application of the founder principle from population genetics to variant selection after recombineering allows the isolation of rare unselected recombinants. Current methods to isolate rare (1:10,000–1:100,000) bacterial artificial chromosome (BAC) recombinants require selectable markers. For seamle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2014-09, Vol.11 (9), p.966-970
Hauptverfasser: Lyozin, George T, Bressloff, Paul C, Kumar, Amit, Kosaka, Yasuhiro, Demarest, Bradley L, Yost, H Joseph, Kuehn, Michael R, Brunelli, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 970
container_issue 9
container_start_page 966
container_title Nature methods
container_volume 11
creator Lyozin, George T
Bressloff, Paul C
Kumar, Amit
Kosaka, Yasuhiro
Demarest, Bradley L
Yost, H Joseph
Kuehn, Michael R
Brunelli, Luca
description Application of the founder principle from population genetics to variant selection after recombineering allows the isolation of rare unselected recombinants. Current methods to isolate rare (1:10,000–1:100,000) bacterial artificial chromosome (BAC) recombinants require selectable markers. For seamless BAC mutagenesis, selectable markers need to be removed after isolation of recombinants through counterselection. Here we illustrate founder principle–driven enrichment (FPE), a simple method to rapidly isolate rare recombinants without using selectable markers, allowing one-step seamless BAC mutagenesis. As proof of principle, we isolated 1:100,000 seamless fluorescent protein–modified Nodal BACs and confirmed BAC functionality by generating fluorescent reporter mice. We also isolated small indel P1 phage–derived artificial chromosome (PAC) and BAC recombinants. Statistical analysis revealed that 1:100,000 recombinants can be isolated with
doi_str_mv 10.1038/nmeth.3030
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4149595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A381057767</galeid><sourcerecordid>A381057767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-9e22fbae498f5266282f6c37a8f7d43cf0fa558835cfcfda50b5449d83dbad403</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEoqVw4QcgS1wQKIvjj8S5IC0rPipV4gJny3HGuy6JvXgcEP8eL9uWFpAPtjzPvOMZv1X1tKGrhnL1OsyQdytOOb1XnTZSqLprqLx_faZ9c1I9QryklHPB5MPqhEnKlOrlaQXnGCeTfQwkOpJMApLAxnnwwYSM5IfPu7hksqAPW4Iwgc1mmIDMJn2FhMTFRGKAGjPsS9zMEyCSt-sNmZdsthAAPT6uHjgzITy52s-qL-_ffd58rC8-fTjfrC9q21KV6x4Yc4MB0SsnWdsyxVxreWeU60bBraPOSKkUl9ZZNxpJBylEPyo-DmYUlJ9Vb466-2WYYbQQcjKT3idfnvtTR-P13UjwO72N37VoRC97WQReXAmk-G0BzHr2aGGaTIC4oG7aVjHZNqwr6PO_0Mu4pFDaK5RkopNc9n-orZlA--BiqWsPonrNVfmmrmsPWqv_UGWNMHtbxut8ub-T8PKYYFNETOBuemyoPphC_zaFPpiiwM9uT-UGvXZBAV4dASyhsIV0q5V_5X4BumPCzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652475359</pqid></control><display><type>article</type><title>Isolation of rare recombinants without using selectable markers for one-step seamless BAC mutagenesis</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lyozin, George T ; Bressloff, Paul C ; Kumar, Amit ; Kosaka, Yasuhiro ; Demarest, Bradley L ; Yost, H Joseph ; Kuehn, Michael R ; Brunelli, Luca</creator><creatorcontrib>Lyozin, George T ; Bressloff, Paul C ; Kumar, Amit ; Kosaka, Yasuhiro ; Demarest, Bradley L ; Yost, H Joseph ; Kuehn, Michael R ; Brunelli, Luca</creatorcontrib><description>Application of the founder principle from population genetics to variant selection after recombineering allows the isolation of rare unselected recombinants. Current methods to isolate rare (1:10,000–1:100,000) bacterial artificial chromosome (BAC) recombinants require selectable markers. For seamless BAC mutagenesis, selectable markers need to be removed after isolation of recombinants through counterselection. Here we illustrate founder principle–driven enrichment (FPE), a simple method to rapidly isolate rare recombinants without using selectable markers, allowing one-step seamless BAC mutagenesis. As proof of principle, we isolated 1:100,000 seamless fluorescent protein–modified Nodal BACs and confirmed BAC functionality by generating fluorescent reporter mice. We also isolated small indel P1 phage–derived artificial chromosome (PAC) and BAC recombinants. Statistical analysis revealed that 1:100,000 recombinants can be isolated with &lt;40 PCRs, and we developed a web-based calculator to optimize FPE.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/nmeth.3030</identifier><identifier>PMID: 25028895</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>14/19 ; 14/35 ; 38/70 ; 38/77 ; 45/22 ; 45/41 ; 45/44 ; 631/114/2397 ; 631/1647/1511 ; 631/208/457 ; 64/60 ; 96/109 ; Animals ; Bioinformatics ; Biological markers ; Biological Microscopy ; Biological Techniques ; Biomedical Engineering/Biotechnology ; Chromosomes ; Chromosomes, Artificial, Bacterial - genetics ; Genetic markers ; Genetic Markers - genetics ; Genetic recombination ; Genomics ; Life Sciences ; Mice ; Mutagenesis ; Mutagenesis, Site-Directed - methods ; Physiological aspects ; Protein Engineering - methods ; Proteomics ; Recombinant Proteins - genetics ; Recombinant Proteins - isolation &amp; purification ; Scientific method ; Statistical analysis</subject><ispartof>Nature methods, 2014-09, Vol.11 (9), p.966-970</ispartof><rights>Springer Nature America, Inc. 2014</rights><rights>COPYRIGHT 2014 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-9e22fbae498f5266282f6c37a8f7d43cf0fa558835cfcfda50b5449d83dbad403</citedby><cites>FETCH-LOGICAL-c608t-9e22fbae498f5266282f6c37a8f7d43cf0fa558835cfcfda50b5449d83dbad403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmeth.3030$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmeth.3030$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25028895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyozin, George T</creatorcontrib><creatorcontrib>Bressloff, Paul C</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Kosaka, Yasuhiro</creatorcontrib><creatorcontrib>Demarest, Bradley L</creatorcontrib><creatorcontrib>Yost, H Joseph</creatorcontrib><creatorcontrib>Kuehn, Michael R</creatorcontrib><creatorcontrib>Brunelli, Luca</creatorcontrib><title>Isolation of rare recombinants without using selectable markers for one-step seamless BAC mutagenesis</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Application of the founder principle from population genetics to variant selection after recombineering allows the isolation of rare unselected recombinants. Current methods to isolate rare (1:10,000–1:100,000) bacterial artificial chromosome (BAC) recombinants require selectable markers. For seamless BAC mutagenesis, selectable markers need to be removed after isolation of recombinants through counterselection. Here we illustrate founder principle–driven enrichment (FPE), a simple method to rapidly isolate rare recombinants without using selectable markers, allowing one-step seamless BAC mutagenesis. As proof of principle, we isolated 1:100,000 seamless fluorescent protein–modified Nodal BACs and confirmed BAC functionality by generating fluorescent reporter mice. We also isolated small indel P1 phage–derived artificial chromosome (PAC) and BAC recombinants. Statistical analysis revealed that 1:100,000 recombinants can be isolated with &lt;40 PCRs, and we developed a web-based calculator to optimize FPE.</description><subject>14/19</subject><subject>14/35</subject><subject>38/70</subject><subject>38/77</subject><subject>45/22</subject><subject>45/41</subject><subject>45/44</subject><subject>631/114/2397</subject><subject>631/1647/1511</subject><subject>631/208/457</subject><subject>64/60</subject><subject>96/109</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biological markers</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Chromosomes</subject><subject>Chromosomes, Artificial, Bacterial - genetics</subject><subject>Genetic markers</subject><subject>Genetic Markers - genetics</subject><subject>Genetic recombination</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed - methods</subject><subject>Physiological aspects</subject><subject>Protein Engineering - methods</subject><subject>Proteomics</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - isolation &amp; purification</subject><subject>Scientific method</subject><subject>Statistical analysis</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkk1v1DAQhiMEoqVw4QcgS1wQKIvjj8S5IC0rPipV4gJny3HGuy6JvXgcEP8eL9uWFpAPtjzPvOMZv1X1tKGrhnL1OsyQdytOOb1XnTZSqLprqLx_faZ9c1I9QryklHPB5MPqhEnKlOrlaQXnGCeTfQwkOpJMApLAxnnwwYSM5IfPu7hksqAPW4Iwgc1mmIDMJn2FhMTFRGKAGjPsS9zMEyCSt-sNmZdsthAAPT6uHjgzITy52s-qL-_ffd58rC8-fTjfrC9q21KV6x4Yc4MB0SsnWdsyxVxreWeU60bBraPOSKkUl9ZZNxpJBylEPyo-DmYUlJ9Vb466-2WYYbQQcjKT3idfnvtTR-P13UjwO72N37VoRC97WQReXAmk-G0BzHr2aGGaTIC4oG7aVjHZNqwr6PO_0Mu4pFDaK5RkopNc9n-orZlA--BiqWsPonrNVfmmrmsPWqv_UGWNMHtbxut8ub-T8PKYYFNETOBuemyoPphC_zaFPpiiwM9uT-UGvXZBAV4dASyhsIV0q5V_5X4BumPCzQ</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Lyozin, George T</creator><creator>Bressloff, Paul C</creator><creator>Kumar, Amit</creator><creator>Kosaka, Yasuhiro</creator><creator>Demarest, Bradley L</creator><creator>Yost, H Joseph</creator><creator>Kuehn, Michael R</creator><creator>Brunelli, Luca</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140901</creationdate><title>Isolation of rare recombinants without using selectable markers for one-step seamless BAC mutagenesis</title><author>Lyozin, George T ; Bressloff, Paul C ; Kumar, Amit ; Kosaka, Yasuhiro ; Demarest, Bradley L ; Yost, H Joseph ; Kuehn, Michael R ; Brunelli, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-9e22fbae498f5266282f6c37a8f7d43cf0fa558835cfcfda50b5449d83dbad403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>14/19</topic><topic>14/35</topic><topic>38/70</topic><topic>38/77</topic><topic>45/22</topic><topic>45/41</topic><topic>45/44</topic><topic>631/114/2397</topic><topic>631/1647/1511</topic><topic>631/208/457</topic><topic>64/60</topic><topic>96/109</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biological markers</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Chromosomes</topic><topic>Chromosomes, Artificial, Bacterial - genetics</topic><topic>Genetic markers</topic><topic>Genetic Markers - genetics</topic><topic>Genetic recombination</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed - methods</topic><topic>Physiological aspects</topic><topic>Protein Engineering - methods</topic><topic>Proteomics</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - isolation &amp; purification</topic><topic>Scientific method</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyozin, George T</creatorcontrib><creatorcontrib>Bressloff, Paul C</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Kosaka, Yasuhiro</creatorcontrib><creatorcontrib>Demarest, Bradley L</creatorcontrib><creatorcontrib>Yost, H Joseph</creatorcontrib><creatorcontrib>Kuehn, Michael R</creatorcontrib><creatorcontrib>Brunelli, Luca</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyozin, George T</au><au>Bressloff, Paul C</au><au>Kumar, Amit</au><au>Kosaka, Yasuhiro</au><au>Demarest, Bradley L</au><au>Yost, H Joseph</au><au>Kuehn, Michael R</au><au>Brunelli, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolation of rare recombinants without using selectable markers for one-step seamless BAC mutagenesis</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>11</volume><issue>9</issue><spage>966</spage><epage>970</epage><pages>966-970</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Application of the founder principle from population genetics to variant selection after recombineering allows the isolation of rare unselected recombinants. Current methods to isolate rare (1:10,000–1:100,000) bacterial artificial chromosome (BAC) recombinants require selectable markers. For seamless BAC mutagenesis, selectable markers need to be removed after isolation of recombinants through counterselection. Here we illustrate founder principle–driven enrichment (FPE), a simple method to rapidly isolate rare recombinants without using selectable markers, allowing one-step seamless BAC mutagenesis. As proof of principle, we isolated 1:100,000 seamless fluorescent protein–modified Nodal BACs and confirmed BAC functionality by generating fluorescent reporter mice. We also isolated small indel P1 phage–derived artificial chromosome (PAC) and BAC recombinants. Statistical analysis revealed that 1:100,000 recombinants can be isolated with &lt;40 PCRs, and we developed a web-based calculator to optimize FPE.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>25028895</pmid><doi>10.1038/nmeth.3030</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2014-09, Vol.11 (9), p.966-970
issn 1548-7091
1548-7105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4149595
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 14/19
14/35
38/70
38/77
45/22
45/41
45/44
631/114/2397
631/1647/1511
631/208/457
64/60
96/109
Animals
Bioinformatics
Biological markers
Biological Microscopy
Biological Techniques
Biomedical Engineering/Biotechnology
Chromosomes
Chromosomes, Artificial, Bacterial - genetics
Genetic markers
Genetic Markers - genetics
Genetic recombination
Genomics
Life Sciences
Mice
Mutagenesis
Mutagenesis, Site-Directed - methods
Physiological aspects
Protein Engineering - methods
Proteomics
Recombinant Proteins - genetics
Recombinant Proteins - isolation & purification
Scientific method
Statistical analysis
title Isolation of rare recombinants without using selectable markers for one-step seamless BAC mutagenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolation%20of%20rare%20recombinants%20without%20using%20selectable%20markers%20for%20one-step%20seamless%20BAC%20mutagenesis&rft.jtitle=Nature%20methods&rft.au=Lyozin,%20George%20T&rft.date=2014-09-01&rft.volume=11&rft.issue=9&rft.spage=966&rft.epage=970&rft.pages=966-970&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/nmeth.3030&rft_dat=%3Cgale_pubme%3EA381057767%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652475359&rft_id=info:pmid/25028895&rft_galeid=A381057767&rfr_iscdi=true