Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri
Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metal...
Gespeichert in:
Veröffentlicht in: | Applied and environmental microbiology 2014-08, Vol.80 (15), p.4599-4605 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4605 |
---|---|
container_issue | 15 |
container_start_page | 4599 |
container_title | Applied and environmental microbiology |
container_volume | 80 |
creator | Rotaru, Amelia-Elena Shrestha, Pravin Malla Liu, Fanghua Markovaite, Beatrice Chen, Shanshan Nevin, Kelly P Lovley, Derek R |
description | Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P.carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable,making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells. |
doi_str_mv | 10.1128/aem.00895-14 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4148795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1586098648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-e93f48629864a4be8207d83fc0bd55fdd29aad22e99db64aef660a8974c997543</originalsourceid><addsrcrecordid>eNqNkUFvFSEUhYnR2NfqzrUhceOiUy8MMLAxaWqtTdq40TVhmDuWOgNPmNH478tra2NdmbsguXycnMMh5BWDI8a4fudwPgLQRjZMPCEbBkY3sm3VU7IBMKbhXMAe2S_lGgAEKP2c7HGh267OhvQfQka_0BAXzGWLPmChONVVTpEu2cUyYqY9Lr8QIz3D1DtfUTrj4qapPh5Wj7FQFwd6icuVi6m47EN0tHf5O-bwgjwb3VTw5f15QL5-PP1y8qm5-Hx2fnJ80XhpuqVB045CK260Ek70qDl0g25HD_0g5TgM3Dg3cI7GDH1FcFQKnDad8MZ0UrQH5P2d7nbtZxyqq2p_stscZpd_2-SCfXwTw5X9ln5awYTujKwCb-8FcvqxYlnsHIrHaXIR01osk1rBzp7-D1RBbYfDDn3zD3qd1hzrT1RKSCkYU6pSh3eUz6mUjOODbwZ217M9Pr20tz1btsv6-u-sD_CfYtsbufelLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545541166</pqid></control><display><type>article</type><title>Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Rotaru, Amelia-Elena ; Shrestha, Pravin Malla ; Liu, Fanghua ; Markovaite, Beatrice ; Chen, Shanshan ; Nevin, Kelly P ; Lovley, Derek R</creator><contributor>Voordouw, G.</contributor><creatorcontrib>Rotaru, Amelia-Elena ; Shrestha, Pravin Malla ; Liu, Fanghua ; Markovaite, Beatrice ; Chen, Shanshan ; Nevin, Kelly P ; Lovley, Derek R ; Voordouw, G.</creatorcontrib><description>Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P.carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable,making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.00895-14</identifier><identifier>PMID: 24837373</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Bacteria ; Biological Transport ; Cells ; Electron transfer ; Electron Transport ; Electrons ; Environmental Microbiology ; Ethanol ; Ethanol - metabolism ; Fimbriae Proteins - genetics ; Fimbriae Proteins - metabolism ; Fimbriae, Bacterial - genetics ; Fimbriae, Bacterial - metabolism ; Geobacter - genetics ; Geobacter - metabolism ; Geobacter metallireducens ; Hydrogen - metabolism ; Metabolism ; Methane ; Methane - metabolism ; Methanosarcina barkeri ; Methanosarcina barkeri - genetics ; Methanosarcina barkeri - metabolism</subject><ispartof>Applied and environmental microbiology, 2014-08, Vol.80 (15), p.4599-4605</ispartof><rights>Copyright American Society for Microbiology Aug 2014</rights><rights>Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-e93f48629864a4be8207d83fc0bd55fdd29aad22e99db64aef660a8974c997543</citedby><cites>FETCH-LOGICAL-c597t-e93f48629864a4be8207d83fc0bd55fdd29aad22e99db64aef660a8974c997543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148795/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148795/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24837373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Voordouw, G.</contributor><creatorcontrib>Rotaru, Amelia-Elena</creatorcontrib><creatorcontrib>Shrestha, Pravin Malla</creatorcontrib><creatorcontrib>Liu, Fanghua</creatorcontrib><creatorcontrib>Markovaite, Beatrice</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Nevin, Kelly P</creatorcontrib><creatorcontrib>Lovley, Derek R</creatorcontrib><title>Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P.carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable,making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.</description><subject>Bacteria</subject><subject>Biological Transport</subject><subject>Cells</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>Environmental Microbiology</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fimbriae Proteins - genetics</subject><subject>Fimbriae Proteins - metabolism</subject><subject>Fimbriae, Bacterial - genetics</subject><subject>Fimbriae, Bacterial - metabolism</subject><subject>Geobacter - genetics</subject><subject>Geobacter - metabolism</subject><subject>Geobacter metallireducens</subject><subject>Hydrogen - metabolism</subject><subject>Metabolism</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Methanosarcina barkeri</subject><subject>Methanosarcina barkeri - genetics</subject><subject>Methanosarcina barkeri - metabolism</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFvFSEUhYnR2NfqzrUhceOiUy8MMLAxaWqtTdq40TVhmDuWOgNPmNH478tra2NdmbsguXycnMMh5BWDI8a4fudwPgLQRjZMPCEbBkY3sm3VU7IBMKbhXMAe2S_lGgAEKP2c7HGh267OhvQfQka_0BAXzGWLPmChONVVTpEu2cUyYqY9Lr8QIz3D1DtfUTrj4qapPh5Wj7FQFwd6icuVi6m47EN0tHf5O-bwgjwb3VTw5f15QL5-PP1y8qm5-Hx2fnJ80XhpuqVB045CK260Ek70qDl0g25HD_0g5TgM3Dg3cI7GDH1FcFQKnDad8MZ0UrQH5P2d7nbtZxyqq2p_stscZpd_2-SCfXwTw5X9ln5awYTujKwCb-8FcvqxYlnsHIrHaXIR01osk1rBzp7-D1RBbYfDDn3zD3qd1hzrT1RKSCkYU6pSh3eUz6mUjOODbwZ217M9Pr20tz1btsv6-u-sD_CfYtsbufelLw</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Rotaru, Amelia-Elena</creator><creator>Shrestha, Pravin Malla</creator><creator>Liu, Fanghua</creator><creator>Markovaite, Beatrice</creator><creator>Chen, Shanshan</creator><creator>Nevin, Kelly P</creator><creator>Lovley, Derek R</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri</title><author>Rotaru, Amelia-Elena ; Shrestha, Pravin Malla ; Liu, Fanghua ; Markovaite, Beatrice ; Chen, Shanshan ; Nevin, Kelly P ; Lovley, Derek R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-e93f48629864a4be8207d83fc0bd55fdd29aad22e99db64aef660a8974c997543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacteria</topic><topic>Biological Transport</topic><topic>Cells</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>Environmental Microbiology</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fimbriae Proteins - genetics</topic><topic>Fimbriae Proteins - metabolism</topic><topic>Fimbriae, Bacterial - genetics</topic><topic>Fimbriae, Bacterial - metabolism</topic><topic>Geobacter - genetics</topic><topic>Geobacter - metabolism</topic><topic>Geobacter metallireducens</topic><topic>Hydrogen - metabolism</topic><topic>Metabolism</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Methanosarcina barkeri</topic><topic>Methanosarcina barkeri - genetics</topic><topic>Methanosarcina barkeri - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotaru, Amelia-Elena</creatorcontrib><creatorcontrib>Shrestha, Pravin Malla</creatorcontrib><creatorcontrib>Liu, Fanghua</creatorcontrib><creatorcontrib>Markovaite, Beatrice</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Nevin, Kelly P</creatorcontrib><creatorcontrib>Lovley, Derek R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotaru, Amelia-Elena</au><au>Shrestha, Pravin Malla</au><au>Liu, Fanghua</au><au>Markovaite, Beatrice</au><au>Chen, Shanshan</au><au>Nevin, Kelly P</au><au>Lovley, Derek R</au><au>Voordouw, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri</atitle><jtitle>Applied and environmental microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>80</volume><issue>15</issue><spage>4599</spage><epage>4605</epage><pages>4599-4605</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P.carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable,making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>24837373</pmid><doi>10.1128/aem.00895-14</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and environmental microbiology, 2014-08, Vol.80 (15), p.4599-4605 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4148795 |
source | American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Bacteria Biological Transport Cells Electron transfer Electron Transport Electrons Environmental Microbiology Ethanol Ethanol - metabolism Fimbriae Proteins - genetics Fimbriae Proteins - metabolism Fimbriae, Bacterial - genetics Fimbriae, Bacterial - metabolism Geobacter - genetics Geobacter - metabolism Geobacter metallireducens Hydrogen - metabolism Metabolism Methane Methane - metabolism Methanosarcina barkeri Methanosarcina barkeri - genetics Methanosarcina barkeri - metabolism |
title | Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20interspecies%20electron%20transfer%20between%20Geobacter%20metallireducens%20and%20Methanosarcina%20barkeri&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Rotaru,%20Amelia-Elena&rft.date=2014-08-01&rft.volume=80&rft.issue=15&rft.spage=4599&rft.epage=4605&rft.pages=4599-4605&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.00895-14&rft_dat=%3Cproquest_pubme%3E1586098648%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545541166&rft_id=info:pmid/24837373&rfr_iscdi=true |