Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri

Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2014-08, Vol.80 (15), p.4599-4605
Hauptverfasser: Rotaru, Amelia-Elena, Shrestha, Pravin Malla, Liu, Fanghua, Markovaite, Beatrice, Chen, Shanshan, Nevin, Kelly P, Lovley, Derek R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4605
container_issue 15
container_start_page 4599
container_title Applied and environmental microbiology
container_volume 80
creator Rotaru, Amelia-Elena
Shrestha, Pravin Malla
Liu, Fanghua
Markovaite, Beatrice
Chen, Shanshan
Nevin, Kelly P
Lovley, Derek R
description Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P.carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable,making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.
doi_str_mv 10.1128/aem.00895-14
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4148795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1586098648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-e93f48629864a4be8207d83fc0bd55fdd29aad22e99db64aef660a8974c997543</originalsourceid><addsrcrecordid>eNqNkUFvFSEUhYnR2NfqzrUhceOiUy8MMLAxaWqtTdq40TVhmDuWOgNPmNH478tra2NdmbsguXycnMMh5BWDI8a4fudwPgLQRjZMPCEbBkY3sm3VU7IBMKbhXMAe2S_lGgAEKP2c7HGh267OhvQfQka_0BAXzGWLPmChONVVTpEu2cUyYqY9Lr8QIz3D1DtfUTrj4qapPh5Wj7FQFwd6icuVi6m47EN0tHf5O-bwgjwb3VTw5f15QL5-PP1y8qm5-Hx2fnJ80XhpuqVB045CK260Ek70qDl0g25HD_0g5TgM3Dg3cI7GDH1FcFQKnDad8MZ0UrQH5P2d7nbtZxyqq2p_stscZpd_2-SCfXwTw5X9ln5awYTujKwCb-8FcvqxYlnsHIrHaXIR01osk1rBzp7-D1RBbYfDDn3zD3qd1hzrT1RKSCkYU6pSh3eUz6mUjOODbwZ217M9Pr20tz1btsv6-u-sD_CfYtsbufelLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545541166</pqid></control><display><type>article</type><title>Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Rotaru, Amelia-Elena ; Shrestha, Pravin Malla ; Liu, Fanghua ; Markovaite, Beatrice ; Chen, Shanshan ; Nevin, Kelly P ; Lovley, Derek R</creator><contributor>Voordouw, G.</contributor><creatorcontrib>Rotaru, Amelia-Elena ; Shrestha, Pravin Malla ; Liu, Fanghua ; Markovaite, Beatrice ; Chen, Shanshan ; Nevin, Kelly P ; Lovley, Derek R ; Voordouw, G.</creatorcontrib><description>Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P.carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable,making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.00895-14</identifier><identifier>PMID: 24837373</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Bacteria ; Biological Transport ; Cells ; Electron transfer ; Electron Transport ; Electrons ; Environmental Microbiology ; Ethanol ; Ethanol - metabolism ; Fimbriae Proteins - genetics ; Fimbriae Proteins - metabolism ; Fimbriae, Bacterial - genetics ; Fimbriae, Bacterial - metabolism ; Geobacter - genetics ; Geobacter - metabolism ; Geobacter metallireducens ; Hydrogen - metabolism ; Metabolism ; Methane ; Methane - metabolism ; Methanosarcina barkeri ; Methanosarcina barkeri - genetics ; Methanosarcina barkeri - metabolism</subject><ispartof>Applied and environmental microbiology, 2014-08, Vol.80 (15), p.4599-4605</ispartof><rights>Copyright American Society for Microbiology Aug 2014</rights><rights>Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c597t-e93f48629864a4be8207d83fc0bd55fdd29aad22e99db64aef660a8974c997543</citedby><cites>FETCH-LOGICAL-c597t-e93f48629864a4be8207d83fc0bd55fdd29aad22e99db64aef660a8974c997543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148795/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148795/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24837373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Voordouw, G.</contributor><creatorcontrib>Rotaru, Amelia-Elena</creatorcontrib><creatorcontrib>Shrestha, Pravin Malla</creatorcontrib><creatorcontrib>Liu, Fanghua</creatorcontrib><creatorcontrib>Markovaite, Beatrice</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Nevin, Kelly P</creatorcontrib><creatorcontrib>Lovley, Derek R</creatorcontrib><title>Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P.carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable,making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.</description><subject>Bacteria</subject><subject>Biological Transport</subject><subject>Cells</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>Environmental Microbiology</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fimbriae Proteins - genetics</subject><subject>Fimbriae Proteins - metabolism</subject><subject>Fimbriae, Bacterial - genetics</subject><subject>Fimbriae, Bacterial - metabolism</subject><subject>Geobacter - genetics</subject><subject>Geobacter - metabolism</subject><subject>Geobacter metallireducens</subject><subject>Hydrogen - metabolism</subject><subject>Metabolism</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Methanosarcina barkeri</subject><subject>Methanosarcina barkeri - genetics</subject><subject>Methanosarcina barkeri - metabolism</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFvFSEUhYnR2NfqzrUhceOiUy8MMLAxaWqtTdq40TVhmDuWOgNPmNH478tra2NdmbsguXycnMMh5BWDI8a4fudwPgLQRjZMPCEbBkY3sm3VU7IBMKbhXMAe2S_lGgAEKP2c7HGh267OhvQfQka_0BAXzGWLPmChONVVTpEu2cUyYqY9Lr8QIz3D1DtfUTrj4qapPh5Wj7FQFwd6icuVi6m47EN0tHf5O-bwgjwb3VTw5f15QL5-PP1y8qm5-Hx2fnJ80XhpuqVB045CK260Ek70qDl0g25HD_0g5TgM3Dg3cI7GDH1FcFQKnDad8MZ0UrQH5P2d7nbtZxyqq2p_stscZpd_2-SCfXwTw5X9ln5awYTujKwCb-8FcvqxYlnsHIrHaXIR01osk1rBzp7-D1RBbYfDDn3zD3qd1hzrT1RKSCkYU6pSh3eUz6mUjOODbwZ217M9Pr20tz1btsv6-u-sD_CfYtsbufelLw</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Rotaru, Amelia-Elena</creator><creator>Shrestha, Pravin Malla</creator><creator>Liu, Fanghua</creator><creator>Markovaite, Beatrice</creator><creator>Chen, Shanshan</creator><creator>Nevin, Kelly P</creator><creator>Lovley, Derek R</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri</title><author>Rotaru, Amelia-Elena ; Shrestha, Pravin Malla ; Liu, Fanghua ; Markovaite, Beatrice ; Chen, Shanshan ; Nevin, Kelly P ; Lovley, Derek R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-e93f48629864a4be8207d83fc0bd55fdd29aad22e99db64aef660a8974c997543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bacteria</topic><topic>Biological Transport</topic><topic>Cells</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>Environmental Microbiology</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fimbriae Proteins - genetics</topic><topic>Fimbriae Proteins - metabolism</topic><topic>Fimbriae, Bacterial - genetics</topic><topic>Fimbriae, Bacterial - metabolism</topic><topic>Geobacter - genetics</topic><topic>Geobacter - metabolism</topic><topic>Geobacter metallireducens</topic><topic>Hydrogen - metabolism</topic><topic>Metabolism</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Methanosarcina barkeri</topic><topic>Methanosarcina barkeri - genetics</topic><topic>Methanosarcina barkeri - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotaru, Amelia-Elena</creatorcontrib><creatorcontrib>Shrestha, Pravin Malla</creatorcontrib><creatorcontrib>Liu, Fanghua</creatorcontrib><creatorcontrib>Markovaite, Beatrice</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Nevin, Kelly P</creatorcontrib><creatorcontrib>Lovley, Derek R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotaru, Amelia-Elena</au><au>Shrestha, Pravin Malla</au><au>Liu, Fanghua</au><au>Markovaite, Beatrice</au><au>Chen, Shanshan</au><au>Nevin, Kelly P</au><au>Lovley, Derek R</au><au>Voordouw, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri</atitle><jtitle>Applied and environmental microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>80</volume><issue>15</issue><spage>4599</spage><epage>4605</epage><pages>4599-4605</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens. Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri, demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H2-producing Pelobacter carbinolicus, incapable of DIET, M. barkeri utilized H2 as an electron donor but metabolized little of the acetate that P.carbinolicus produced. This suggested that H2, but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H2 transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H2 or electrons derived from DIET for CO2 reduction. Furthermore, M. barkeri is genetically tractable,making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>24837373</pmid><doi>10.1128/aem.00895-14</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and environmental microbiology, 2014-08, Vol.80 (15), p.4599-4605
issn 0099-2240
1098-5336
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4148795
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Bacteria
Biological Transport
Cells
Electron transfer
Electron Transport
Electrons
Environmental Microbiology
Ethanol
Ethanol - metabolism
Fimbriae Proteins - genetics
Fimbriae Proteins - metabolism
Fimbriae, Bacterial - genetics
Fimbriae, Bacterial - metabolism
Geobacter - genetics
Geobacter - metabolism
Geobacter metallireducens
Hydrogen - metabolism
Metabolism
Methane
Methane - metabolism
Methanosarcina barkeri
Methanosarcina barkeri - genetics
Methanosarcina barkeri - metabolism
title Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20interspecies%20electron%20transfer%20between%20Geobacter%20metallireducens%20and%20Methanosarcina%20barkeri&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Rotaru,%20Amelia-Elena&rft.date=2014-08-01&rft.volume=80&rft.issue=15&rft.spage=4599&rft.epage=4605&rft.pages=4599-4605&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.00895-14&rft_dat=%3Cproquest_pubme%3E1586098648%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545541166&rft_id=info:pmid/24837373&rfr_iscdi=true