Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns
ABSTRACT Based on quantitative cluster analyses of 52 constitutively expressed or behaviorally regulated genes in 23 brain regions, we present a global view of telencephalic organization of birds. The patterns of constitutively expressed genes revealed a partial mirror image organization of three ma...
Gespeichert in:
Veröffentlicht in: | Journal of comparative neurology (1911) 2013-11, Vol.521 (16), p.3614-3665 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3665 |
---|---|
container_issue | 16 |
container_start_page | 3614 |
container_title | Journal of comparative neurology (1911) |
container_volume | 521 |
creator | Jarvis, Erich D. Yu, Jing Rivas, Miriam V. Horita, Haruhito Feenders, Gesa Whitney, Osceola Jarvis, Syrus C. Jarvis, Electra R. Kubikova, Lubica Puck, Ana E.P. Siang-Bakshi, Connie Martin, Suzanne McElroy, Michael Hara, Erina Howard, Jason Pfenning, Andreas Mouritsen, Henrik Chen, Chun-Chun Wada, Kazuhiro |
description | ABSTRACT
Based on quantitative cluster analyses of 52 constitutively expressed or behaviorally regulated genes in 23 brain regions, we present a global view of telencephalic organization of birds. The patterns of constitutively expressed genes revealed a partial mirror image organization of three major cell populations that wrap above, around, and below the ventricle and adjacent lamina through the mesopallium. The patterns of behaviorally regulated genes revealed functional columns of activation across boundaries of these cell populations, reminiscent of columns through layers of the mammalian cortex. The avian functionally regulated columns were of two types: those above the ventricle and associated mesopallial lamina, formed by our revised dorsal mesopallium, hyperpallium, and intercalated hyperpallium; and those below the ventricle, formed by our revised ventral mesopallium, nidopallium, and intercalated nidopallium. Based on these findings and known connectivity, we propose that the avian pallium has four major cell populations similar to those in mammalian cortex and some parts of the amygdala: 1) a primary sensory input population (intercalated pallium); 2) a secondary intrapallial population (nidopallium/hyperpallium); 3) a tertiary intrapallial population (mesopallium); and 4) a quaternary output population (the arcopallium). Each population contributes portions to columns that control different sensory or motor systems. We suggest that this organization of cell groups forms by expansion of contiguous developmental cell domains that wrap around the lateral ventricle and its extension through the middle of the mesopallium. We believe that the position of the lateral ventricle and its associated mesopallium lamina has resulted in a conceptual barrier to recognizing related cell groups across its border, thereby confounding our understanding of homologies with mammals. J. Comp. Neurol. 521:3614–3665, 2013. © 2013 Wiley Periodicals, Inc.
Using bioinformatic profiling of constitutive and behaviorally regulated genes, we propose a novel view of avian brain organization, which group most of the telencephalon into four major cell populations of which three have mirror image counterparts above and below the lateral ventricle that function in columns for sensory‐motor systems analogous to the mammalian brain. |
doi_str_mv | 10.1002/cne.23404 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4145244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1438571069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5804-427e125b07a7fd4757b4f805d30073bb7eff7d6d2dbf8d7b168a15294d45964f3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EokNhwQugSGxgkfb6J7HDAglGJUWUsuFnaTmJPXVx7MGeTClPj6fTGRUkJFaWfL776doHoacYjjAAOe69PiKUAbuHZhiaumxEje-jWc5w2TQ1P0CPUroEgKah4iE6IFRggQmZoWXrQqdcsbb6qgimWF3owky-X9ng8_UYnO4np2IR4kJ5-0ttgh2o1lb5otdRd3EaXxUfbYwhFnZUC50K5Ye7qj64afTpMXpglEv6ye15iL68O_k8Py3PPrXv52_Oyr4SwEpGuMak6oArbgbGK94xI6AaKACnXce1MXyoBzJ0Rgy8w7VQuCING1jV1MzQQ_R6611O3aiHXvtVVE4uY94uXsugrPwz8fZCLsJaMswqwlgWvLgVxPBj0mklR5t67ZzyOkxJ4sxQTgSI_0CpqDiGusno87_QyzDF_D83FCcAmGyol1uqjyGlqM1-bwxyU7nMlcubyjP77O5D9-Su4wwcb4Er6_T1v01yfn6yU5bbCZtW-ud-QsXvsuaUV_LbeSt5-_a0_QofJKe_AcoHxWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437200129</pqid></control><display><type>article</type><title>Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jarvis, Erich D. ; Yu, Jing ; Rivas, Miriam V. ; Horita, Haruhito ; Feenders, Gesa ; Whitney, Osceola ; Jarvis, Syrus C. ; Jarvis, Electra R. ; Kubikova, Lubica ; Puck, Ana E.P. ; Siang-Bakshi, Connie ; Martin, Suzanne ; McElroy, Michael ; Hara, Erina ; Howard, Jason ; Pfenning, Andreas ; Mouritsen, Henrik ; Chen, Chun-Chun ; Wada, Kazuhiro</creator><creatorcontrib>Jarvis, Erich D. ; Yu, Jing ; Rivas, Miriam V. ; Horita, Haruhito ; Feenders, Gesa ; Whitney, Osceola ; Jarvis, Syrus C. ; Jarvis, Electra R. ; Kubikova, Lubica ; Puck, Ana E.P. ; Siang-Bakshi, Connie ; Martin, Suzanne ; McElroy, Michael ; Hara, Erina ; Howard, Jason ; Pfenning, Andreas ; Mouritsen, Henrik ; Chen, Chun-Chun ; Wada, Kazuhiro</creatorcontrib><description>ABSTRACT
Based on quantitative cluster analyses of 52 constitutively expressed or behaviorally regulated genes in 23 brain regions, we present a global view of telencephalic organization of birds. The patterns of constitutively expressed genes revealed a partial mirror image organization of three major cell populations that wrap above, around, and below the ventricle and adjacent lamina through the mesopallium. The patterns of behaviorally regulated genes revealed functional columns of activation across boundaries of these cell populations, reminiscent of columns through layers of the mammalian cortex. The avian functionally regulated columns were of two types: those above the ventricle and associated mesopallial lamina, formed by our revised dorsal mesopallium, hyperpallium, and intercalated hyperpallium; and those below the ventricle, formed by our revised ventral mesopallium, nidopallium, and intercalated nidopallium. Based on these findings and known connectivity, we propose that the avian pallium has four major cell populations similar to those in mammalian cortex and some parts of the amygdala: 1) a primary sensory input population (intercalated pallium); 2) a secondary intrapallial population (nidopallium/hyperpallium); 3) a tertiary intrapallial population (mesopallium); and 4) a quaternary output population (the arcopallium). Each population contributes portions to columns that control different sensory or motor systems. We suggest that this organization of cell groups forms by expansion of contiguous developmental cell domains that wrap around the lateral ventricle and its extension through the middle of the mesopallium. We believe that the position of the lateral ventricle and its associated mesopallium lamina has resulted in a conceptual barrier to recognizing related cell groups across its border, thereby confounding our understanding of homologies with mammals. J. Comp. Neurol. 521:3614–3665, 2013. © 2013 Wiley Periodicals, Inc.
Using bioinformatic profiling of constitutive and behaviorally regulated genes, we propose a novel view of avian brain organization, which group most of the telencephalon into four major cell populations of which three have mirror image counterparts above and below the lateral ventricle that function in columns for sensory‐motor systems analogous to the mammalian brain.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.23404</identifier><identifier>PMID: 23818122</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Amygdala ; Animals ; basal ganglia ; Birds - anatomy & histology ; brain evolution ; brain organization ; brain pathways ; Cell Count ; Cerebrum - anatomy & histology ; Cerebrum - metabolism ; claustrum ; cortex ; forebrain ; Gene Expression ; Imaging, Three-Dimensional ; immediate early genes ; motor behavior ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; neural activity ; Neuroimaging ; Neurons - metabolism ; neurotransmitter receptors ; pallidum ; pallium ; primary sensory ; Species Specificity ; striatum</subject><ispartof>Journal of comparative neurology (1911), 2013-11, Vol.521 (16), p.3614-3665</ispartof><rights>Copyright © 2013 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.</rights><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2013 Wiley Periodicals, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5804-427e125b07a7fd4757b4f805d30073bb7eff7d6d2dbf8d7b168a15294d45964f3</citedby><cites>FETCH-LOGICAL-c5804-427e125b07a7fd4757b4f805d30073bb7eff7d6d2dbf8d7b168a15294d45964f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.23404$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.23404$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23818122$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jarvis, Erich D.</creatorcontrib><creatorcontrib>Yu, Jing</creatorcontrib><creatorcontrib>Rivas, Miriam V.</creatorcontrib><creatorcontrib>Horita, Haruhito</creatorcontrib><creatorcontrib>Feenders, Gesa</creatorcontrib><creatorcontrib>Whitney, Osceola</creatorcontrib><creatorcontrib>Jarvis, Syrus C.</creatorcontrib><creatorcontrib>Jarvis, Electra R.</creatorcontrib><creatorcontrib>Kubikova, Lubica</creatorcontrib><creatorcontrib>Puck, Ana E.P.</creatorcontrib><creatorcontrib>Siang-Bakshi, Connie</creatorcontrib><creatorcontrib>Martin, Suzanne</creatorcontrib><creatorcontrib>McElroy, Michael</creatorcontrib><creatorcontrib>Hara, Erina</creatorcontrib><creatorcontrib>Howard, Jason</creatorcontrib><creatorcontrib>Pfenning, Andreas</creatorcontrib><creatorcontrib>Mouritsen, Henrik</creatorcontrib><creatorcontrib>Chen, Chun-Chun</creatorcontrib><creatorcontrib>Wada, Kazuhiro</creatorcontrib><title>Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns</title><title>Journal of comparative neurology (1911)</title><addtitle>J. Comp. Neurol</addtitle><description>ABSTRACT
Based on quantitative cluster analyses of 52 constitutively expressed or behaviorally regulated genes in 23 brain regions, we present a global view of telencephalic organization of birds. The patterns of constitutively expressed genes revealed a partial mirror image organization of three major cell populations that wrap above, around, and below the ventricle and adjacent lamina through the mesopallium. The patterns of behaviorally regulated genes revealed functional columns of activation across boundaries of these cell populations, reminiscent of columns through layers of the mammalian cortex. The avian functionally regulated columns were of two types: those above the ventricle and associated mesopallial lamina, formed by our revised dorsal mesopallium, hyperpallium, and intercalated hyperpallium; and those below the ventricle, formed by our revised ventral mesopallium, nidopallium, and intercalated nidopallium. Based on these findings and known connectivity, we propose that the avian pallium has four major cell populations similar to those in mammalian cortex and some parts of the amygdala: 1) a primary sensory input population (intercalated pallium); 2) a secondary intrapallial population (nidopallium/hyperpallium); 3) a tertiary intrapallial population (mesopallium); and 4) a quaternary output population (the arcopallium). Each population contributes portions to columns that control different sensory or motor systems. We suggest that this organization of cell groups forms by expansion of contiguous developmental cell domains that wrap around the lateral ventricle and its extension through the middle of the mesopallium. We believe that the position of the lateral ventricle and its associated mesopallium lamina has resulted in a conceptual barrier to recognizing related cell groups across its border, thereby confounding our understanding of homologies with mammals. J. Comp. Neurol. 521:3614–3665, 2013. © 2013 Wiley Periodicals, Inc.
Using bioinformatic profiling of constitutive and behaviorally regulated genes, we propose a novel view of avian brain organization, which group most of the telencephalon into four major cell populations of which three have mirror image counterparts above and below the lateral ventricle that function in columns for sensory‐motor systems analogous to the mammalian brain.</description><subject>Amygdala</subject><subject>Animals</subject><subject>basal ganglia</subject><subject>Birds - anatomy & histology</subject><subject>brain evolution</subject><subject>brain organization</subject><subject>brain pathways</subject><subject>Cell Count</subject><subject>Cerebrum - anatomy & histology</subject><subject>Cerebrum - metabolism</subject><subject>claustrum</subject><subject>cortex</subject><subject>forebrain</subject><subject>Gene Expression</subject><subject>Imaging, Three-Dimensional</subject><subject>immediate early genes</subject><subject>motor behavior</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>neural activity</subject><subject>Neuroimaging</subject><subject>Neurons - metabolism</subject><subject>neurotransmitter receptors</subject><subject>pallidum</subject><subject>pallium</subject><subject>primary sensory</subject><subject>Species Specificity</subject><subject>striatum</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EokNhwQugSGxgkfb6J7HDAglGJUWUsuFnaTmJPXVx7MGeTClPj6fTGRUkJFaWfL776doHoacYjjAAOe69PiKUAbuHZhiaumxEje-jWc5w2TQ1P0CPUroEgKah4iE6IFRggQmZoWXrQqdcsbb6qgimWF3owky-X9ng8_UYnO4np2IR4kJ5-0ttgh2o1lb5otdRd3EaXxUfbYwhFnZUC50K5Ye7qj64afTpMXpglEv6ye15iL68O_k8Py3PPrXv52_Oyr4SwEpGuMak6oArbgbGK94xI6AaKACnXce1MXyoBzJ0Rgy8w7VQuCING1jV1MzQQ_R6611O3aiHXvtVVE4uY94uXsugrPwz8fZCLsJaMswqwlgWvLgVxPBj0mklR5t67ZzyOkxJ4sxQTgSI_0CpqDiGusno87_QyzDF_D83FCcAmGyol1uqjyGlqM1-bwxyU7nMlcubyjP77O5D9-Su4wwcb4Er6_T1v01yfn6yU5bbCZtW-ud-QsXvsuaUV_LbeSt5-_a0_QofJKe_AcoHxWo</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Jarvis, Erich D.</creator><creator>Yu, Jing</creator><creator>Rivas, Miriam V.</creator><creator>Horita, Haruhito</creator><creator>Feenders, Gesa</creator><creator>Whitney, Osceola</creator><creator>Jarvis, Syrus C.</creator><creator>Jarvis, Electra R.</creator><creator>Kubikova, Lubica</creator><creator>Puck, Ana E.P.</creator><creator>Siang-Bakshi, Connie</creator><creator>Martin, Suzanne</creator><creator>McElroy, Michael</creator><creator>Hara, Erina</creator><creator>Howard, Jason</creator><creator>Pfenning, Andreas</creator><creator>Mouritsen, Henrik</creator><creator>Chen, Chun-Chun</creator><creator>Wada, Kazuhiro</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201311</creationdate><title>Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns</title><author>Jarvis, Erich D. ; Yu, Jing ; Rivas, Miriam V. ; Horita, Haruhito ; Feenders, Gesa ; Whitney, Osceola ; Jarvis, Syrus C. ; Jarvis, Electra R. ; Kubikova, Lubica ; Puck, Ana E.P. ; Siang-Bakshi, Connie ; Martin, Suzanne ; McElroy, Michael ; Hara, Erina ; Howard, Jason ; Pfenning, Andreas ; Mouritsen, Henrik ; Chen, Chun-Chun ; Wada, Kazuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5804-427e125b07a7fd4757b4f805d30073bb7eff7d6d2dbf8d7b168a15294d45964f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amygdala</topic><topic>Animals</topic><topic>basal ganglia</topic><topic>Birds - anatomy & histology</topic><topic>brain evolution</topic><topic>brain organization</topic><topic>brain pathways</topic><topic>Cell Count</topic><topic>Cerebrum - anatomy & histology</topic><topic>Cerebrum - metabolism</topic><topic>claustrum</topic><topic>cortex</topic><topic>forebrain</topic><topic>Gene Expression</topic><topic>Imaging, Three-Dimensional</topic><topic>immediate early genes</topic><topic>motor behavior</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>neural activity</topic><topic>Neuroimaging</topic><topic>Neurons - metabolism</topic><topic>neurotransmitter receptors</topic><topic>pallidum</topic><topic>pallium</topic><topic>primary sensory</topic><topic>Species Specificity</topic><topic>striatum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jarvis, Erich D.</creatorcontrib><creatorcontrib>Yu, Jing</creatorcontrib><creatorcontrib>Rivas, Miriam V.</creatorcontrib><creatorcontrib>Horita, Haruhito</creatorcontrib><creatorcontrib>Feenders, Gesa</creatorcontrib><creatorcontrib>Whitney, Osceola</creatorcontrib><creatorcontrib>Jarvis, Syrus C.</creatorcontrib><creatorcontrib>Jarvis, Electra R.</creatorcontrib><creatorcontrib>Kubikova, Lubica</creatorcontrib><creatorcontrib>Puck, Ana E.P.</creatorcontrib><creatorcontrib>Siang-Bakshi, Connie</creatorcontrib><creatorcontrib>Martin, Suzanne</creatorcontrib><creatorcontrib>McElroy, Michael</creatorcontrib><creatorcontrib>Hara, Erina</creatorcontrib><creatorcontrib>Howard, Jason</creatorcontrib><creatorcontrib>Pfenning, Andreas</creatorcontrib><creatorcontrib>Mouritsen, Henrik</creatorcontrib><creatorcontrib>Chen, Chun-Chun</creatorcontrib><creatorcontrib>Wada, Kazuhiro</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jarvis, Erich D.</au><au>Yu, Jing</au><au>Rivas, Miriam V.</au><au>Horita, Haruhito</au><au>Feenders, Gesa</au><au>Whitney, Osceola</au><au>Jarvis, Syrus C.</au><au>Jarvis, Electra R.</au><au>Kubikova, Lubica</au><au>Puck, Ana E.P.</au><au>Siang-Bakshi, Connie</au><au>Martin, Suzanne</au><au>McElroy, Michael</au><au>Hara, Erina</au><au>Howard, Jason</au><au>Pfenning, Andreas</au><au>Mouritsen, Henrik</au><au>Chen, Chun-Chun</au><au>Wada, Kazuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J. Comp. Neurol</addtitle><date>2013-11</date><risdate>2013</risdate><volume>521</volume><issue>16</issue><spage>3614</spage><epage>3665</epage><pages>3614-3665</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>ABSTRACT
Based on quantitative cluster analyses of 52 constitutively expressed or behaviorally regulated genes in 23 brain regions, we present a global view of telencephalic organization of birds. The patterns of constitutively expressed genes revealed a partial mirror image organization of three major cell populations that wrap above, around, and below the ventricle and adjacent lamina through the mesopallium. The patterns of behaviorally regulated genes revealed functional columns of activation across boundaries of these cell populations, reminiscent of columns through layers of the mammalian cortex. The avian functionally regulated columns were of two types: those above the ventricle and associated mesopallial lamina, formed by our revised dorsal mesopallium, hyperpallium, and intercalated hyperpallium; and those below the ventricle, formed by our revised ventral mesopallium, nidopallium, and intercalated nidopallium. Based on these findings and known connectivity, we propose that the avian pallium has four major cell populations similar to those in mammalian cortex and some parts of the amygdala: 1) a primary sensory input population (intercalated pallium); 2) a secondary intrapallial population (nidopallium/hyperpallium); 3) a tertiary intrapallial population (mesopallium); and 4) a quaternary output population (the arcopallium). Each population contributes portions to columns that control different sensory or motor systems. We suggest that this organization of cell groups forms by expansion of contiguous developmental cell domains that wrap around the lateral ventricle and its extension through the middle of the mesopallium. We believe that the position of the lateral ventricle and its associated mesopallium lamina has resulted in a conceptual barrier to recognizing related cell groups across its border, thereby confounding our understanding of homologies with mammals. J. Comp. Neurol. 521:3614–3665, 2013. © 2013 Wiley Periodicals, Inc.
Using bioinformatic profiling of constitutive and behaviorally regulated genes, we propose a novel view of avian brain organization, which group most of the telencephalon into four major cell populations of which three have mirror image counterparts above and below the lateral ventricle that function in columns for sensory‐motor systems analogous to the mammalian brain.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>23818122</pmid><doi>10.1002/cne.23404</doi><tpages>52</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9967 |
ispartof | Journal of comparative neurology (1911), 2013-11, Vol.521 (16), p.3614-3665 |
issn | 0021-9967 1096-9861 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4145244 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amygdala Animals basal ganglia Birds - anatomy & histology brain evolution brain organization brain pathways Cell Count Cerebrum - anatomy & histology Cerebrum - metabolism claustrum cortex forebrain Gene Expression Imaging, Three-Dimensional immediate early genes motor behavior Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism neural activity Neuroimaging Neurons - metabolism neurotransmitter receptors pallidum pallium primary sensory Species Specificity striatum |
title | Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20view%20of%20the%20functional%20molecular%20organization%20of%20the%20avian%20cerebrum:%20Mirror%20images%20and%20functional%20columns&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Jarvis,%20Erich%20D.&rft.date=2013-11&rft.volume=521&rft.issue=16&rft.spage=3614&rft.epage=3665&rft.pages=3614-3665&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.23404&rft_dat=%3Cproquest_pubme%3E1438571069%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437200129&rft_id=info:pmid/23818122&rfr_iscdi=true |