The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers
Cellulose microfibrils are para-crystalline arrays of several dozen linear (1-4)-β-D-glucan chains synthesized at the surface of the cell membrane by large, multimene complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly...
Gespeichert in:
Veröffentlicht in: | The Plant cell 2014-07, Vol.26 (7), p.2996-3009 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3009 |
---|---|
container_issue | 7 |
container_start_page | 2996 |
container_title | The Plant cell |
container_volume | 26 |
creator | Olek, Anna T. Rayon, Catherine Makowski, Lee Kim, Hyung Rae Ciesielski, Peter Badger, John Paul, Lake N. Ghosh, Subhangi Kihara, Daisuke Crowley, Michael Himmel, Michael E. Bolin, Jeffrey T. Carpita, Nicholas C. |
description | Cellulose microfibrils are para-crystalline arrays of several dozen linear (1-4)-β-D-glucan chains synthesized at the surface of the cell membrane by large, multimene complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-GIc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize. |
doi_str_mv | 10.1105/tpc.114.126862 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4145127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43190468</jstor_id><sourcerecordid>43190468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-c79dbb8a35ffef56c6b146c838c2b5e65f6e64a55b776465643f3e9b3b4c25003</originalsourceid><addsrcrecordid>eNpVUc1LHDEcDcVS7bbX3pTQUy-z5nsyF0HWfghCBS30FpNsphuZSdYkU9j_3sjooqc8fu_9XvLyAPiC0RJjxE_L1lbAlpgIKcg7cIQ5JQ3p5N-DihFDDRMcH4KPOd8jhHCLuw_gkHCECe7QEbi73Th4U9Jky5QcjD0sdbDSRQ-74i28iKP24Wmu4fWgQ4ErNwzTEHNd24Wy0RXosIaXJcPznN1ohh30oUR44UeX8ifwvtdDdp-fzwX48-P77epXc_X75-Xq_KqxjHalsW23NkZqyvve9VxYYTATVlJpieFO8F44wTTnpm1FjSQY7anrDDXM1jSILsDZ7LudzOjW1oWS9KC2yY867VTUXr1lgt-of_G_YphxTNpq8HU2iLl4la0vzm5sDMHZojChRHSyir4935Liw-RyUaPPtv6IDi5OWWHOJSdE1hYWYDlLbYo5J9fv34KReupO1e4qYGruri6cvE6wl7-UVQXHs-A-l5j2PKOVZELSRwdrnyk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558522815</pqid></control><display><type>article</type><title>The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR</source><creator>Olek, Anna T. ; Rayon, Catherine ; Makowski, Lee ; Kim, Hyung Rae ; Ciesielski, Peter ; Badger, John ; Paul, Lake N. ; Ghosh, Subhangi ; Kihara, Daisuke ; Crowley, Michael ; Himmel, Michael E. ; Bolin, Jeffrey T. ; Carpita, Nicholas C.</creator><creatorcontrib>Olek, Anna T. ; Rayon, Catherine ; Makowski, Lee ; Kim, Hyung Rae ; Ciesielski, Peter ; Badger, John ; Paul, Lake N. ; Ghosh, Subhangi ; Kihara, Daisuke ; Crowley, Michael ; Himmel, Michael E. ; Bolin, Jeffrey T. ; Carpita, Nicholas C. ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Cellulose microfibrils are para-crystalline arrays of several dozen linear (1-4)-β-D-glucan chains synthesized at the surface of the cell membrane by large, multimene complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-GIc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.</description><identifier>ISSN: 1040-4651</identifier><identifier>ISSN: 1532-298X</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.114.126862</identifier><identifier>PMID: 25012190</identifier><language>eng</language><publisher>England: American Society of Plant Biologists</publisher><subject>Amino acids ; Catalytic Domain ; Cell Membrane - metabolism ; Cell Wall - metabolism ; Cellulose - metabolism ; Dimers ; Glucosyltransferases - chemistry ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Modeling ; Models, Molecular ; Molecular Conformation ; Monomers ; Nucleotides ; Oryza - enzymology ; Oryza - genetics ; Plant cells ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Protein Binding ; Protein isoforms ; Protein Multimerization ; Proteins ; Recombinant Proteins ; Rice ; Substrate Specificity</subject><ispartof>The Plant cell, 2014-07, Vol.26 (7), p.2996-3009</ispartof><rights>2014 American Society of Plant Biologists</rights><rights>2014 American Society of Plant Biologists. All rights reserved.</rights><rights>2014 American Society of Plant Biologists. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-c79dbb8a35ffef56c6b146c838c2b5e65f6e64a55b776465643f3e9b3b4c25003</citedby><orcidid>0000-0003-0770-314X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43190468$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43190468$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25012190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1232698$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Olek, Anna T.</creatorcontrib><creatorcontrib>Rayon, Catherine</creatorcontrib><creatorcontrib>Makowski, Lee</creatorcontrib><creatorcontrib>Kim, Hyung Rae</creatorcontrib><creatorcontrib>Ciesielski, Peter</creatorcontrib><creatorcontrib>Badger, John</creatorcontrib><creatorcontrib>Paul, Lake N.</creatorcontrib><creatorcontrib>Ghosh, Subhangi</creatorcontrib><creatorcontrib>Kihara, Daisuke</creatorcontrib><creatorcontrib>Crowley, Michael</creatorcontrib><creatorcontrib>Himmel, Michael E.</creatorcontrib><creatorcontrib>Bolin, Jeffrey T.</creatorcontrib><creatorcontrib>Carpita, Nicholas C.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Cellulose microfibrils are para-crystalline arrays of several dozen linear (1-4)-β-D-glucan chains synthesized at the surface of the cell membrane by large, multimene complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-GIc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.</description><subject>Amino acids</subject><subject>Catalytic Domain</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Wall - metabolism</subject><subject>Cellulose - metabolism</subject><subject>Dimers</subject><subject>Glucosyltransferases - chemistry</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Modeling</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Monomers</subject><subject>Nucleotides</subject><subject>Oryza - enzymology</subject><subject>Oryza - genetics</subject><subject>Plant cells</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Protein Binding</subject><subject>Protein isoforms</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Recombinant Proteins</subject><subject>Rice</subject><subject>Substrate Specificity</subject><issn>1040-4651</issn><issn>1532-298X</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUc1LHDEcDcVS7bbX3pTQUy-z5nsyF0HWfghCBS30FpNsphuZSdYkU9j_3sjooqc8fu_9XvLyAPiC0RJjxE_L1lbAlpgIKcg7cIQ5JQ3p5N-DihFDDRMcH4KPOd8jhHCLuw_gkHCECe7QEbi73Th4U9Jky5QcjD0sdbDSRQ-74i28iKP24Wmu4fWgQ4ErNwzTEHNd24Wy0RXosIaXJcPznN1ohh30oUR44UeX8ifwvtdDdp-fzwX48-P77epXc_X75-Xq_KqxjHalsW23NkZqyvve9VxYYTATVlJpieFO8F44wTTnpm1FjSQY7anrDDXM1jSILsDZ7LudzOjW1oWS9KC2yY867VTUXr1lgt-of_G_YphxTNpq8HU2iLl4la0vzm5sDMHZojChRHSyir4935Liw-RyUaPPtv6IDi5OWWHOJSdE1hYWYDlLbYo5J9fv34KReupO1e4qYGruri6cvE6wl7-UVQXHs-A-l5j2PKOVZELSRwdrnyk</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Olek, Anna T.</creator><creator>Rayon, Catherine</creator><creator>Makowski, Lee</creator><creator>Kim, Hyung Rae</creator><creator>Ciesielski, Peter</creator><creator>Badger, John</creator><creator>Paul, Lake N.</creator><creator>Ghosh, Subhangi</creator><creator>Kihara, Daisuke</creator><creator>Crowley, Michael</creator><creator>Himmel, Michael E.</creator><creator>Bolin, Jeffrey T.</creator><creator>Carpita, Nicholas C.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0770-314X</orcidid></search><sort><creationdate>20140701</creationdate><title>The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers</title><author>Olek, Anna T. ; Rayon, Catherine ; Makowski, Lee ; Kim, Hyung Rae ; Ciesielski, Peter ; Badger, John ; Paul, Lake N. ; Ghosh, Subhangi ; Kihara, Daisuke ; Crowley, Michael ; Himmel, Michael E. ; Bolin, Jeffrey T. ; Carpita, Nicholas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-c79dbb8a35ffef56c6b146c838c2b5e65f6e64a55b776465643f3e9b3b4c25003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino acids</topic><topic>Catalytic Domain</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Wall - metabolism</topic><topic>Cellulose - metabolism</topic><topic>Dimers</topic><topic>Glucosyltransferases - chemistry</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Modeling</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Monomers</topic><topic>Nucleotides</topic><topic>Oryza - enzymology</topic><topic>Oryza - genetics</topic><topic>Plant cells</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Protein Binding</topic><topic>Protein isoforms</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Recombinant Proteins</topic><topic>Rice</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olek, Anna T.</creatorcontrib><creatorcontrib>Rayon, Catherine</creatorcontrib><creatorcontrib>Makowski, Lee</creatorcontrib><creatorcontrib>Kim, Hyung Rae</creatorcontrib><creatorcontrib>Ciesielski, Peter</creatorcontrib><creatorcontrib>Badger, John</creatorcontrib><creatorcontrib>Paul, Lake N.</creatorcontrib><creatorcontrib>Ghosh, Subhangi</creatorcontrib><creatorcontrib>Kihara, Daisuke</creatorcontrib><creatorcontrib>Crowley, Michael</creatorcontrib><creatorcontrib>Himmel, Michael E.</creatorcontrib><creatorcontrib>Bolin, Jeffrey T.</creatorcontrib><creatorcontrib>Carpita, Nicholas C.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olek, Anna T.</au><au>Rayon, Catherine</au><au>Makowski, Lee</au><au>Kim, Hyung Rae</au><au>Ciesielski, Peter</au><au>Badger, John</au><au>Paul, Lake N.</au><au>Ghosh, Subhangi</au><au>Kihara, Daisuke</au><au>Crowley, Michael</au><au>Himmel, Michael E.</au><au>Bolin, Jeffrey T.</au><au>Carpita, Nicholas C.</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>26</volume><issue>7</issue><spage>2996</spage><epage>3009</epage><pages>2996-3009</pages><issn>1040-4651</issn><issn>1532-298X</issn><eissn>1532-298X</eissn><abstract>Cellulose microfibrils are para-crystalline arrays of several dozen linear (1-4)-β-D-glucan chains synthesized at the surface of the cell membrane by large, multimene complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-GIc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.</abstract><cop>England</cop><pub>American Society of Plant Biologists</pub><pmid>25012190</pmid><doi>10.1105/tpc.114.126862</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0770-314X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-4651 |
ispartof | The Plant cell, 2014-07, Vol.26 (7), p.2996-3009 |
issn | 1040-4651 1532-298X 1532-298X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4145127 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; JSTOR |
subjects | Amino acids Catalytic Domain Cell Membrane - metabolism Cell Wall - metabolism Cellulose - metabolism Dimers Glucosyltransferases - chemistry Glucosyltransferases - genetics Glucosyltransferases - metabolism Modeling Models, Molecular Molecular Conformation Monomers Nucleotides Oryza - enzymology Oryza - genetics Plant cells Plant Proteins - chemistry Plant Proteins - genetics Plant Proteins - metabolism Plants Protein Binding Protein isoforms Protein Multimerization Proteins Recombinant Proteins Rice Substrate Specificity |
title | The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20the%20Catalytic%20Domain%20of%20a%20Plant%20Cellulose%20Synthase%20and%20Its%20Assembly%20into%20Dimers&rft.jtitle=The%20Plant%20cell&rft.au=Olek,%20Anna%20T.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2014-07-01&rft.volume=26&rft.issue=7&rft.spage=2996&rft.epage=3009&rft.pages=2996-3009&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.114.126862&rft_dat=%3Cjstor_pubme%3E43190468%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558522815&rft_id=info:pmid/25012190&rft_jstor_id=43190468&rfr_iscdi=true |