The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers

Cellulose microfibrils are para-crystalline arrays of several dozen linear (1-4)-β-D-glucan chains synthesized at the surface of the cell membrane by large, multimene complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2014-07, Vol.26 (7), p.2996-3009
Hauptverfasser: Olek, Anna T., Rayon, Catherine, Makowski, Lee, Kim, Hyung Rae, Ciesielski, Peter, Badger, John, Paul, Lake N., Ghosh, Subhangi, Kihara, Daisuke, Crowley, Michael, Himmel, Michael E., Bolin, Jeffrey T., Carpita, Nicholas C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3009
container_issue 7
container_start_page 2996
container_title The Plant cell
container_volume 26
creator Olek, Anna T.
Rayon, Catherine
Makowski, Lee
Kim, Hyung Rae
Ciesielski, Peter
Badger, John
Paul, Lake N.
Ghosh, Subhangi
Kihara, Daisuke
Crowley, Michael
Himmel, Michael E.
Bolin, Jeffrey T.
Carpita, Nicholas C.
description Cellulose microfibrils are para-crystalline arrays of several dozen linear (1-4)-β-D-glucan chains synthesized at the surface of the cell membrane by large, multimene complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-GIc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.
doi_str_mv 10.1105/tpc.114.126862
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4145127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43190468</jstor_id><sourcerecordid>43190468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-c79dbb8a35ffef56c6b146c838c2b5e65f6e64a55b776465643f3e9b3b4c25003</originalsourceid><addsrcrecordid>eNpVUc1LHDEcDcVS7bbX3pTQUy-z5nsyF0HWfghCBS30FpNsphuZSdYkU9j_3sjooqc8fu_9XvLyAPiC0RJjxE_L1lbAlpgIKcg7cIQ5JQ3p5N-DihFDDRMcH4KPOd8jhHCLuw_gkHCECe7QEbi73Th4U9Jky5QcjD0sdbDSRQ-74i28iKP24Wmu4fWgQ4ErNwzTEHNd24Wy0RXosIaXJcPznN1ohh30oUR44UeX8ifwvtdDdp-fzwX48-P77epXc_X75-Xq_KqxjHalsW23NkZqyvve9VxYYTATVlJpieFO8F44wTTnpm1FjSQY7anrDDXM1jSILsDZ7LudzOjW1oWS9KC2yY867VTUXr1lgt-of_G_YphxTNpq8HU2iLl4la0vzm5sDMHZojChRHSyir4935Liw-RyUaPPtv6IDi5OWWHOJSdE1hYWYDlLbYo5J9fv34KReupO1e4qYGruri6cvE6wl7-UVQXHs-A-l5j2PKOVZELSRwdrnyk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558522815</pqid></control><display><type>article</type><title>The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>JSTOR</source><creator>Olek, Anna T. ; Rayon, Catherine ; Makowski, Lee ; Kim, Hyung Rae ; Ciesielski, Peter ; Badger, John ; Paul, Lake N. ; Ghosh, Subhangi ; Kihara, Daisuke ; Crowley, Michael ; Himmel, Michael E. ; Bolin, Jeffrey T. ; Carpita, Nicholas C.</creator><creatorcontrib>Olek, Anna T. ; Rayon, Catherine ; Makowski, Lee ; Kim, Hyung Rae ; Ciesielski, Peter ; Badger, John ; Paul, Lake N. ; Ghosh, Subhangi ; Kihara, Daisuke ; Crowley, Michael ; Himmel, Michael E. ; Bolin, Jeffrey T. ; Carpita, Nicholas C. ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Cellulose microfibrils are para-crystalline arrays of several dozen linear (1-4)-β-D-glucan chains synthesized at the surface of the cell membrane by large, multimene complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-GIc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.</description><identifier>ISSN: 1040-4651</identifier><identifier>ISSN: 1532-298X</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.114.126862</identifier><identifier>PMID: 25012190</identifier><language>eng</language><publisher>England: American Society of Plant Biologists</publisher><subject>Amino acids ; Catalytic Domain ; Cell Membrane - metabolism ; Cell Wall - metabolism ; Cellulose - metabolism ; Dimers ; Glucosyltransferases - chemistry ; Glucosyltransferases - genetics ; Glucosyltransferases - metabolism ; Modeling ; Models, Molecular ; Molecular Conformation ; Monomers ; Nucleotides ; Oryza - enzymology ; Oryza - genetics ; Plant cells ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants ; Protein Binding ; Protein isoforms ; Protein Multimerization ; Proteins ; Recombinant Proteins ; Rice ; Substrate Specificity</subject><ispartof>The Plant cell, 2014-07, Vol.26 (7), p.2996-3009</ispartof><rights>2014 American Society of Plant Biologists</rights><rights>2014 American Society of Plant Biologists. All rights reserved.</rights><rights>2014 American Society of Plant Biologists. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-c79dbb8a35ffef56c6b146c838c2b5e65f6e64a55b776465643f3e9b3b4c25003</citedby><orcidid>0000-0003-0770-314X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43190468$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43190468$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25012190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1232698$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Olek, Anna T.</creatorcontrib><creatorcontrib>Rayon, Catherine</creatorcontrib><creatorcontrib>Makowski, Lee</creatorcontrib><creatorcontrib>Kim, Hyung Rae</creatorcontrib><creatorcontrib>Ciesielski, Peter</creatorcontrib><creatorcontrib>Badger, John</creatorcontrib><creatorcontrib>Paul, Lake N.</creatorcontrib><creatorcontrib>Ghosh, Subhangi</creatorcontrib><creatorcontrib>Kihara, Daisuke</creatorcontrib><creatorcontrib>Crowley, Michael</creatorcontrib><creatorcontrib>Himmel, Michael E.</creatorcontrib><creatorcontrib>Bolin, Jeffrey T.</creatorcontrib><creatorcontrib>Carpita, Nicholas C.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>Cellulose microfibrils are para-crystalline arrays of several dozen linear (1-4)-β-D-glucan chains synthesized at the surface of the cell membrane by large, multimene complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-GIc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.</description><subject>Amino acids</subject><subject>Catalytic Domain</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Wall - metabolism</subject><subject>Cellulose - metabolism</subject><subject>Dimers</subject><subject>Glucosyltransferases - chemistry</subject><subject>Glucosyltransferases - genetics</subject><subject>Glucosyltransferases - metabolism</subject><subject>Modeling</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Monomers</subject><subject>Nucleotides</subject><subject>Oryza - enzymology</subject><subject>Oryza - genetics</subject><subject>Plant cells</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants</subject><subject>Protein Binding</subject><subject>Protein isoforms</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Recombinant Proteins</subject><subject>Rice</subject><subject>Substrate Specificity</subject><issn>1040-4651</issn><issn>1532-298X</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUc1LHDEcDcVS7bbX3pTQUy-z5nsyF0HWfghCBS30FpNsphuZSdYkU9j_3sjooqc8fu_9XvLyAPiC0RJjxE_L1lbAlpgIKcg7cIQ5JQ3p5N-DihFDDRMcH4KPOd8jhHCLuw_gkHCECe7QEbi73Th4U9Jky5QcjD0sdbDSRQ-74i28iKP24Wmu4fWgQ4ErNwzTEHNd24Wy0RXosIaXJcPznN1ohh30oUR44UeX8ifwvtdDdp-fzwX48-P77epXc_X75-Xq_KqxjHalsW23NkZqyvve9VxYYTATVlJpieFO8F44wTTnpm1FjSQY7anrDDXM1jSILsDZ7LudzOjW1oWS9KC2yY867VTUXr1lgt-of_G_YphxTNpq8HU2iLl4la0vzm5sDMHZojChRHSyir4935Liw-RyUaPPtv6IDi5OWWHOJSdE1hYWYDlLbYo5J9fv34KReupO1e4qYGruri6cvE6wl7-UVQXHs-A-l5j2PKOVZELSRwdrnyk</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Olek, Anna T.</creator><creator>Rayon, Catherine</creator><creator>Makowski, Lee</creator><creator>Kim, Hyung Rae</creator><creator>Ciesielski, Peter</creator><creator>Badger, John</creator><creator>Paul, Lake N.</creator><creator>Ghosh, Subhangi</creator><creator>Kihara, Daisuke</creator><creator>Crowley, Michael</creator><creator>Himmel, Michael E.</creator><creator>Bolin, Jeffrey T.</creator><creator>Carpita, Nicholas C.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0770-314X</orcidid></search><sort><creationdate>20140701</creationdate><title>The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers</title><author>Olek, Anna T. ; Rayon, Catherine ; Makowski, Lee ; Kim, Hyung Rae ; Ciesielski, Peter ; Badger, John ; Paul, Lake N. ; Ghosh, Subhangi ; Kihara, Daisuke ; Crowley, Michael ; Himmel, Michael E. ; Bolin, Jeffrey T. ; Carpita, Nicholas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-c79dbb8a35ffef56c6b146c838c2b5e65f6e64a55b776465643f3e9b3b4c25003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino acids</topic><topic>Catalytic Domain</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Wall - metabolism</topic><topic>Cellulose - metabolism</topic><topic>Dimers</topic><topic>Glucosyltransferases - chemistry</topic><topic>Glucosyltransferases - genetics</topic><topic>Glucosyltransferases - metabolism</topic><topic>Modeling</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Monomers</topic><topic>Nucleotides</topic><topic>Oryza - enzymology</topic><topic>Oryza - genetics</topic><topic>Plant cells</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants</topic><topic>Protein Binding</topic><topic>Protein isoforms</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Recombinant Proteins</topic><topic>Rice</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olek, Anna T.</creatorcontrib><creatorcontrib>Rayon, Catherine</creatorcontrib><creatorcontrib>Makowski, Lee</creatorcontrib><creatorcontrib>Kim, Hyung Rae</creatorcontrib><creatorcontrib>Ciesielski, Peter</creatorcontrib><creatorcontrib>Badger, John</creatorcontrib><creatorcontrib>Paul, Lake N.</creatorcontrib><creatorcontrib>Ghosh, Subhangi</creatorcontrib><creatorcontrib>Kihara, Daisuke</creatorcontrib><creatorcontrib>Crowley, Michael</creatorcontrib><creatorcontrib>Himmel, Michael E.</creatorcontrib><creatorcontrib>Bolin, Jeffrey T.</creatorcontrib><creatorcontrib>Carpita, Nicholas C.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olek, Anna T.</au><au>Rayon, Catherine</au><au>Makowski, Lee</au><au>Kim, Hyung Rae</au><au>Ciesielski, Peter</au><au>Badger, John</au><au>Paul, Lake N.</au><au>Ghosh, Subhangi</au><au>Kihara, Daisuke</au><au>Crowley, Michael</au><au>Himmel, Michael E.</au><au>Bolin, Jeffrey T.</au><au>Carpita, Nicholas C.</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>26</volume><issue>7</issue><spage>2996</spage><epage>3009</epage><pages>2996-3009</pages><issn>1040-4651</issn><issn>1532-298X</issn><eissn>1532-298X</eissn><abstract>Cellulose microfibrils are para-crystalline arrays of several dozen linear (1-4)-β-D-glucan chains synthesized at the surface of the cell membrane by large, multimene complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-GIc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.</abstract><cop>England</cop><pub>American Society of Plant Biologists</pub><pmid>25012190</pmid><doi>10.1105/tpc.114.126862</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0770-314X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2014-07, Vol.26 (7), p.2996-3009
issn 1040-4651
1532-298X
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4145127
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; JSTOR
subjects Amino acids
Catalytic Domain
Cell Membrane - metabolism
Cell Wall - metabolism
Cellulose - metabolism
Dimers
Glucosyltransferases - chemistry
Glucosyltransferases - genetics
Glucosyltransferases - metabolism
Modeling
Models, Molecular
Molecular Conformation
Monomers
Nucleotides
Oryza - enzymology
Oryza - genetics
Plant cells
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Protein Binding
Protein isoforms
Protein Multimerization
Proteins
Recombinant Proteins
Rice
Substrate Specificity
title The Structure of the Catalytic Domain of a Plant Cellulose Synthase and Its Assembly into Dimers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20the%20Catalytic%20Domain%20of%20a%20Plant%20Cellulose%20Synthase%20and%20Its%20Assembly%20into%20Dimers&rft.jtitle=The%20Plant%20cell&rft.au=Olek,%20Anna%20T.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2014-07-01&rft.volume=26&rft.issue=7&rft.spage=2996&rft.epage=3009&rft.pages=2996-3009&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.114.126862&rft_dat=%3Cjstor_pubme%3E43190468%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558522815&rft_id=info:pmid/25012190&rft_jstor_id=43190468&rfr_iscdi=true