Taxonomies of networks from community structure
The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-09, Vol.86 (3 Pt 2), p.036104-036104, Article 036104 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 036104 |
---|---|
container_issue | 3 Pt 2 |
container_start_page | 036104 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 86 |
creator | Onnela, Jukka-Pekka Fenn, Daniel J Reid, Stephen Porter, Mason A Mucha, Peter J Fricker, Mark D Jones, Nick S |
description | The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi. |
doi_str_mv | 10.1103/physreve.86.036104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4144942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1186924108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-4438e1fc89cfac1fe9e500cc0f21d50078f0d27ee0b5cc427d3642342799eac43</originalsourceid><addsrcrecordid>eNpVkM1Lw0AQxRdRbK3-Ax4kRy9pZz-S7F4EKfUDCorU85JuZm20ydbdpNr_3pTWoqd5MO-9GX6EXFIYUgp8tFpsgsc1DmU6BJ5SEEekT5MEYsaz9HiruYp5liQ9chbCOwBnXIpT0mMcOKgs65PRLP92tatKDJGzUY3Nl_MfIbLeVZFxVdXWZbOJQuNb07Qez8mJzZcBL_ZzQF7vJrPxQzx9un8c305jI1LZxEJwidQaqYzNDbWoMAEwBiyjRacyaaFgGSLME2MEywqeCsY7oRTmRvABudn1rtp5hYXBuvH5Uq98WeV-o11e6v-bulzoN7fWggqhuqoBud4XePfZYmh0VQaDy2Veo2uDplSmigkKsrOyndV4Fzqi9nCGgt6S1s8d6RdcT7RM9Y50F7r6--Ah8ouW_wCyan1M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1186924108</pqid></control><display><type>article</type><title>Taxonomies of networks from community structure</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Onnela, Jukka-Pekka ; Fenn, Daniel J ; Reid, Stephen ; Porter, Mason A ; Mucha, Peter J ; Fricker, Mark D ; Jones, Nick S</creator><creatorcontrib>Onnela, Jukka-Pekka ; Fenn, Daniel J ; Reid, Stephen ; Porter, Mason A ; Mucha, Peter J ; Fricker, Mark D ; Jones, Nick S</creatorcontrib><description>The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/physreve.86.036104</identifier><identifier>PMID: 23030977</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Computer Simulation ; Models, Theoretical</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-09, Vol.86 (3 Pt 2), p.036104-036104, Article 036104</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-4438e1fc89cfac1fe9e500cc0f21d50078f0d27ee0b5cc427d3642342799eac43</citedby><cites>FETCH-LOGICAL-c468t-4438e1fc89cfac1fe9e500cc0f21d50078f0d27ee0b5cc427d3642342799eac43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23030977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Onnela, Jukka-Pekka</creatorcontrib><creatorcontrib>Fenn, Daniel J</creatorcontrib><creatorcontrib>Reid, Stephen</creatorcontrib><creatorcontrib>Porter, Mason A</creatorcontrib><creatorcontrib>Mucha, Peter J</creatorcontrib><creatorcontrib>Fricker, Mark D</creatorcontrib><creatorcontrib>Jones, Nick S</creatorcontrib><title>Taxonomies of networks from community structure</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Models, Theoretical</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkM1Lw0AQxRdRbK3-Ax4kRy9pZz-S7F4EKfUDCorU85JuZm20ydbdpNr_3pTWoqd5MO-9GX6EXFIYUgp8tFpsgsc1DmU6BJ5SEEekT5MEYsaz9HiruYp5liQ9chbCOwBnXIpT0mMcOKgs65PRLP92tatKDJGzUY3Nl_MfIbLeVZFxVdXWZbOJQuNb07Qez8mJzZcBL_ZzQF7vJrPxQzx9un8c305jI1LZxEJwidQaqYzNDbWoMAEwBiyjRacyaaFgGSLME2MEywqeCsY7oRTmRvABudn1rtp5hYXBuvH5Uq98WeV-o11e6v-bulzoN7fWggqhuqoBud4XePfZYmh0VQaDy2Veo2uDplSmigkKsrOyndV4Fzqi9nCGgt6S1s8d6RdcT7RM9Y50F7r6--Ah8ouW_wCyan1M</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Onnela, Jukka-Pekka</creator><creator>Fenn, Daniel J</creator><creator>Reid, Stephen</creator><creator>Porter, Mason A</creator><creator>Mucha, Peter J</creator><creator>Fricker, Mark D</creator><creator>Jones, Nick S</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120901</creationdate><title>Taxonomies of networks from community structure</title><author>Onnela, Jukka-Pekka ; Fenn, Daniel J ; Reid, Stephen ; Porter, Mason A ; Mucha, Peter J ; Fricker, Mark D ; Jones, Nick S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-4438e1fc89cfac1fe9e500cc0f21d50078f0d27ee0b5cc427d3642342799eac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Models, Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Onnela, Jukka-Pekka</creatorcontrib><creatorcontrib>Fenn, Daniel J</creatorcontrib><creatorcontrib>Reid, Stephen</creatorcontrib><creatorcontrib>Porter, Mason A</creatorcontrib><creatorcontrib>Mucha, Peter J</creatorcontrib><creatorcontrib>Fricker, Mark D</creatorcontrib><creatorcontrib>Jones, Nick S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onnela, Jukka-Pekka</au><au>Fenn, Daniel J</au><au>Reid, Stephen</au><au>Porter, Mason A</au><au>Mucha, Peter J</au><au>Fricker, Mark D</au><au>Jones, Nick S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taxonomies of networks from community structure</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>86</volume><issue>3 Pt 2</issue><spage>036104</spage><epage>036104</epage><pages>036104-036104</pages><artnum>036104</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.</abstract><cop>United States</cop><pmid>23030977</pmid><doi>10.1103/physreve.86.036104</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-09, Vol.86 (3 Pt 2), p.036104-036104, Article 036104 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4144942 |
source | MEDLINE; American Physical Society Journals |
subjects | Algorithms Computer Simulation Models, Theoretical |
title | Taxonomies of networks from community structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taxonomies%20of%20networks%20from%20community%20structure&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Onnela,%20Jukka-Pekka&rft.date=2012-09-01&rft.volume=86&rft.issue=3%20Pt%202&rft.spage=036104&rft.epage=036104&rft.pages=036104-036104&rft.artnum=036104&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/physreve.86.036104&rft_dat=%3Cproquest_pubme%3E1186924108%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1186924108&rft_id=info:pmid/23030977&rfr_iscdi=true |