Beta-cell specific production of IL6 in conjunction with a mainly intracellular but not mainly surface viral protein causes diabetes
Abstract Inflammatory mechanisms play a key role in the pathogenesis of type 1 and type 2 diabetes. IL6, a pleiotropic cytokine with impact on immune and non-immune cell types, has been proposed to be involved in the events causing both forms of diabetes and to play a key role in experimental insuli...
Gespeichert in:
Veröffentlicht in: | Journal of autoimmunity 2014-12, Vol.55, p.24-32 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Inflammatory mechanisms play a key role in the pathogenesis of type 1 and type 2 diabetes. IL6, a pleiotropic cytokine with impact on immune and non-immune cell types, has been proposed to be involved in the events causing both forms of diabetes and to play a key role in experimental insulin-dependent diabetes development. The aim of this study was to investigate how beta-cell specific overexpression of IL-6 influences diabetes development. We developed two lines of rat insulin promoter (RIP)-lymphocytic choriomeningitis virus (LCMV) mice that also co-express IL6 in their beta-cells. Expression of the viral nucleoprotein (NP), which has a predominantly intracellular localization, together with IL6 led to hyperglycemia, which was associated with a loss of GLUT-2 expression in the pancreatic beta-cells and infiltration of CD11b+ cells, but not T cells, in the pancreas. In contrast, overexpression of the LCMV glycoprotein (GP), which can localize to the surface, with IL-6 did not lead to spontaneous diabetes, but accelerated virus-induced diabetes by increasing autoantigen-specific CD8+ T cell responses and reducing the regulatory T cell fraction, leading to increased pancreatic infiltration by CD4+ and CD8+ T cells as well as CD11b+ and CD11c+ cells. The production of IL-6 in beta-cells acts prodiabetic, underscoring the potential benefit of targeting IL6 in diabetes. |
---|---|
ISSN: | 0896-8411 1095-9157 |
DOI: | 10.1016/j.jaut.2014.02.002 |