Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement

The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2014-07, Vol.158 (1), p.121-131
Hauptverfasser: Budkevich, Tatyana V., Giesebrecht, Jan, Behrmann, Elmar, Loerke, Justus, Ramrath, David J.F., Mielke, Thorsten, Ismer, Jochen, Hildebrand, Peter W., Tung, Chang-Shung, Nierhaus, Knud H., Sanbonmatsu, Karissa Y., Spahn, Christian M.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 1
container_start_page 121
container_title Cell
container_volume 158
creator Budkevich, Tatyana V.
Giesebrecht, Jan
Behrmann, Elmar
Loerke, Justus
Ramrath, David J.F.
Mielke, Thorsten
Ismer, Jochen
Hildebrand, Peter W.
Tung, Chang-Shung
Nierhaus, Knud H.
Sanbonmatsu, Karissa Y.
Spahn, Christian M.T.
description The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion “subunit rolling.” Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection. [Display omitted] •The structure of mammalian POST translocation complex at subnanometer resolution•Structures of two substates of the mammalian decoding complex•Subunit rolling: a eukaryotic-specific conformational change in the ribosome•A seesaw-like model for GTPase activation during mammalian tRNA selection The analyses of the mammalian 80S ribosome in various steps of translation elongation by cryoelectron microscopy reveal surprising structural distinctions from the bacterial system, including a eukaryotic-specific conformational change called subunit rolling.
doi_str_mv 10.1016/j.cell.2014.04.044
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4141720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867414006722</els_id><sourcerecordid>1543282338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-93870c88941ee7836b3ed69472677246cf275ff82e732c5ad26c834b616efe163</originalsourceid><addsrcrecordid>eNqFUU2LFDEQDaK44-of8CA5eukx30mLCMswfsCKMKvnkE5Xz2ZMd8ake2H-vd3MuuhFoaAO9d6rqvcQeknJmhKq3hzWHmJcM0LFmiwlHqEVJbWuBNXsMVoRUrPKKC0u0LNSDoQQI6V8ii6YqGtZG75C_Q72U3RjSANOHR5vAX9xfe9icAPexjTsz7PNyUfAzQnfTM00hBHvUoxh2L_FV3g7_XD5lMbgq5sj-NAFj3ehSSX1gHfgcnbDHnoYxufoSedigRf3_RJ9_7D9tvlUXX_9-HlzdV15KcVY1dxo4o2pBQXQhquGQ6tqoZnSmgnlO6Zl1xkGmjMvXcuUN1w0iirogCp-id6fdY9T00Pr59XZRXvMoZ8vtckF-_dkCLd2n-6soIt1ZBZ4fS-Q088Jymj7UBa33QBpKpbNXjKmpKb_hVIpODOMczND2RnqcyolQ_dwESV2idQe7MK0S6SWLCVm0qs_f3mg_M5wBrw7A2B29C5AtsUHGDy0IYMfbZvCv_R_Afkos1U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543282338</pqid></control><display><type>article</type><title>Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Budkevich, Tatyana V. ; Giesebrecht, Jan ; Behrmann, Elmar ; Loerke, Justus ; Ramrath, David J.F. ; Mielke, Thorsten ; Ismer, Jochen ; Hildebrand, Peter W. ; Tung, Chang-Shung ; Nierhaus, Knud H. ; Sanbonmatsu, Karissa Y. ; Spahn, Christian M.T.</creator><creatorcontrib>Budkevich, Tatyana V. ; Giesebrecht, Jan ; Behrmann, Elmar ; Loerke, Justus ; Ramrath, David J.F. ; Mielke, Thorsten ; Ismer, Jochen ; Hildebrand, Peter W. ; Tung, Chang-Shung ; Nierhaus, Knud H. ; Sanbonmatsu, Karissa Y. ; Spahn, Christian M.T.</creatorcontrib><description>The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion “subunit rolling.” Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection. [Display omitted] •The structure of mammalian POST translocation complex at subnanometer resolution•Structures of two substates of the mammalian decoding complex•Subunit rolling: a eukaryotic-specific conformational change in the ribosome•A seesaw-like model for GTPase activation during mammalian tRNA selection The analyses of the mammalian 80S ribosome in various steps of translation elongation by cryoelectron microscopy reveal surprising structural distinctions from the bacterial system, including a eukaryotic-specific conformational change called subunit rolling.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2014.04.044</identifier><identifier>PMID: 24995983</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Anticodon - metabolism ; bacteria ; Codon - metabolism ; cryo-electron microscopy ; Cryoelectron Microscopy ; Crystallography, X-Ray ; guanosinetriphosphatase ; Humans ; mammals ; Mammals - metabolism ; Molecular Sequence Data ; Peptide Chain Elongation, Translational ; Rabbits ; ribosomes ; Ribosomes - chemistry ; RNA, Transfer - metabolism ; Saccharomyces cerevisiae - metabolism ; Tetrahymena thermophila - metabolism ; transfer RNA</subject><ispartof>Cell, 2014-07, Vol.158 (1), p.121-131</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-93870c88941ee7836b3ed69472677246cf275ff82e732c5ad26c834b616efe163</citedby><cites>FETCH-LOGICAL-c554t-93870c88941ee7836b3ed69472677246cf275ff82e732c5ad26c834b616efe163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2014.04.044$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24995983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Budkevich, Tatyana V.</creatorcontrib><creatorcontrib>Giesebrecht, Jan</creatorcontrib><creatorcontrib>Behrmann, Elmar</creatorcontrib><creatorcontrib>Loerke, Justus</creatorcontrib><creatorcontrib>Ramrath, David J.F.</creatorcontrib><creatorcontrib>Mielke, Thorsten</creatorcontrib><creatorcontrib>Ismer, Jochen</creatorcontrib><creatorcontrib>Hildebrand, Peter W.</creatorcontrib><creatorcontrib>Tung, Chang-Shung</creatorcontrib><creatorcontrib>Nierhaus, Knud H.</creatorcontrib><creatorcontrib>Sanbonmatsu, Karissa Y.</creatorcontrib><creatorcontrib>Spahn, Christian M.T.</creatorcontrib><title>Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement</title><title>Cell</title><addtitle>Cell</addtitle><description>The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion “subunit rolling.” Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection. [Display omitted] •The structure of mammalian POST translocation complex at subnanometer resolution•Structures of two substates of the mammalian decoding complex•Subunit rolling: a eukaryotic-specific conformational change in the ribosome•A seesaw-like model for GTPase activation during mammalian tRNA selection The analyses of the mammalian 80S ribosome in various steps of translation elongation by cryoelectron microscopy reveal surprising structural distinctions from the bacterial system, including a eukaryotic-specific conformational change called subunit rolling.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Anticodon - metabolism</subject><subject>bacteria</subject><subject>Codon - metabolism</subject><subject>cryo-electron microscopy</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>guanosinetriphosphatase</subject><subject>Humans</subject><subject>mammals</subject><subject>Mammals - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Peptide Chain Elongation, Translational</subject><subject>Rabbits</subject><subject>ribosomes</subject><subject>Ribosomes - chemistry</subject><subject>RNA, Transfer - metabolism</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Tetrahymena thermophila - metabolism</subject><subject>transfer RNA</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU2LFDEQDaK44-of8CA5eukx30mLCMswfsCKMKvnkE5Xz2ZMd8ake2H-vd3MuuhFoaAO9d6rqvcQeknJmhKq3hzWHmJcM0LFmiwlHqEVJbWuBNXsMVoRUrPKKC0u0LNSDoQQI6V8ii6YqGtZG75C_Q72U3RjSANOHR5vAX9xfe9icAPexjTsz7PNyUfAzQnfTM00hBHvUoxh2L_FV3g7_XD5lMbgq5sj-NAFj3ehSSX1gHfgcnbDHnoYxufoSedigRf3_RJ9_7D9tvlUXX_9-HlzdV15KcVY1dxo4o2pBQXQhquGQ6tqoZnSmgnlO6Zl1xkGmjMvXcuUN1w0iirogCp-id6fdY9T00Pr59XZRXvMoZ8vtckF-_dkCLd2n-6soIt1ZBZ4fS-Q088Jymj7UBa33QBpKpbNXjKmpKb_hVIpODOMczND2RnqcyolQ_dwESV2idQe7MK0S6SWLCVm0qs_f3mg_M5wBrw7A2B29C5AtsUHGDy0IYMfbZvCv_R_Afkos1U</recordid><startdate>20140703</startdate><enddate>20140703</enddate><creator>Budkevich, Tatyana V.</creator><creator>Giesebrecht, Jan</creator><creator>Behrmann, Elmar</creator><creator>Loerke, Justus</creator><creator>Ramrath, David J.F.</creator><creator>Mielke, Thorsten</creator><creator>Ismer, Jochen</creator><creator>Hildebrand, Peter W.</creator><creator>Tung, Chang-Shung</creator><creator>Nierhaus, Knud H.</creator><creator>Sanbonmatsu, Karissa Y.</creator><creator>Spahn, Christian M.T.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140703</creationdate><title>Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement</title><author>Budkevich, Tatyana V. ; Giesebrecht, Jan ; Behrmann, Elmar ; Loerke, Justus ; Ramrath, David J.F. ; Mielke, Thorsten ; Ismer, Jochen ; Hildebrand, Peter W. ; Tung, Chang-Shung ; Nierhaus, Knud H. ; Sanbonmatsu, Karissa Y. ; Spahn, Christian M.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-93870c88941ee7836b3ed69472677246cf275ff82e732c5ad26c834b616efe163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Anticodon - metabolism</topic><topic>bacteria</topic><topic>Codon - metabolism</topic><topic>cryo-electron microscopy</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>guanosinetriphosphatase</topic><topic>Humans</topic><topic>mammals</topic><topic>Mammals - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Peptide Chain Elongation, Translational</topic><topic>Rabbits</topic><topic>ribosomes</topic><topic>Ribosomes - chemistry</topic><topic>RNA, Transfer - metabolism</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Tetrahymena thermophila - metabolism</topic><topic>transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budkevich, Tatyana V.</creatorcontrib><creatorcontrib>Giesebrecht, Jan</creatorcontrib><creatorcontrib>Behrmann, Elmar</creatorcontrib><creatorcontrib>Loerke, Justus</creatorcontrib><creatorcontrib>Ramrath, David J.F.</creatorcontrib><creatorcontrib>Mielke, Thorsten</creatorcontrib><creatorcontrib>Ismer, Jochen</creatorcontrib><creatorcontrib>Hildebrand, Peter W.</creatorcontrib><creatorcontrib>Tung, Chang-Shung</creatorcontrib><creatorcontrib>Nierhaus, Knud H.</creatorcontrib><creatorcontrib>Sanbonmatsu, Karissa Y.</creatorcontrib><creatorcontrib>Spahn, Christian M.T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budkevich, Tatyana V.</au><au>Giesebrecht, Jan</au><au>Behrmann, Elmar</au><au>Loerke, Justus</au><au>Ramrath, David J.F.</au><au>Mielke, Thorsten</au><au>Ismer, Jochen</au><au>Hildebrand, Peter W.</au><au>Tung, Chang-Shung</au><au>Nierhaus, Knud H.</au><au>Sanbonmatsu, Karissa Y.</au><au>Spahn, Christian M.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2014-07-03</date><risdate>2014</risdate><volume>158</volume><issue>1</issue><spage>121</spage><epage>131</epage><pages>121-131</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion “subunit rolling.” Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection. [Display omitted] •The structure of mammalian POST translocation complex at subnanometer resolution•Structures of two substates of the mammalian decoding complex•Subunit rolling: a eukaryotic-specific conformational change in the ribosome•A seesaw-like model for GTPase activation during mammalian tRNA selection The analyses of the mammalian 80S ribosome in various steps of translation elongation by cryoelectron microscopy reveal surprising structural distinctions from the bacterial system, including a eukaryotic-specific conformational change called subunit rolling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24995983</pmid><doi>10.1016/j.cell.2014.04.044</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2014-07, Vol.158 (1), p.121-131
issn 0092-8674
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4141720
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amino Acid Sequence
Animals
Anticodon - metabolism
bacteria
Codon - metabolism
cryo-electron microscopy
Cryoelectron Microscopy
Crystallography, X-Ray
guanosinetriphosphatase
Humans
mammals
Mammals - metabolism
Molecular Sequence Data
Peptide Chain Elongation, Translational
Rabbits
ribosomes
Ribosomes - chemistry
RNA, Transfer - metabolism
Saccharomyces cerevisiae - metabolism
Tetrahymena thermophila - metabolism
transfer RNA
title Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20the%20Mammalian%20Elongation%20Cycle%20by%20Subunit%20Rolling:%20A%20Eukaryotic-Specific%20Ribosome%20Rearrangement&rft.jtitle=Cell&rft.au=Budkevich,%20Tatyana%C2%A0V.&rft.date=2014-07-03&rft.volume=158&rft.issue=1&rft.spage=121&rft.epage=131&rft.pages=121-131&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2014.04.044&rft_dat=%3Cproquest_pubme%3E1543282338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543282338&rft_id=info:pmid/24995983&rft_els_id=S0092867414006722&rfr_iscdi=true