Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement
The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex...
Gespeichert in:
Veröffentlicht in: | Cell 2014-07, Vol.158 (1), p.121-131 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 1 |
container_start_page | 121 |
container_title | Cell |
container_volume | 158 |
creator | Budkevich, Tatyana V. Giesebrecht, Jan Behrmann, Elmar Loerke, Justus Ramrath, David J.F. Mielke, Thorsten Ismer, Jochen Hildebrand, Peter W. Tung, Chang-Shung Nierhaus, Knud H. Sanbonmatsu, Karissa Y. Spahn, Christian M.T. |
description | The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion “subunit rolling.” Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection.
[Display omitted]
•The structure of mammalian POST translocation complex at subnanometer resolution•Structures of two substates of the mammalian decoding complex•Subunit rolling: a eukaryotic-specific conformational change in the ribosome•A seesaw-like model for GTPase activation during mammalian tRNA selection
The analyses of the mammalian 80S ribosome in various steps of translation elongation by cryoelectron microscopy reveal surprising structural distinctions from the bacterial system, including a eukaryotic-specific conformational change called subunit rolling. |
doi_str_mv | 10.1016/j.cell.2014.04.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4141720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867414006722</els_id><sourcerecordid>1543282338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-93870c88941ee7836b3ed69472677246cf275ff82e732c5ad26c834b616efe163</originalsourceid><addsrcrecordid>eNqFUU2LFDEQDaK44-of8CA5eukx30mLCMswfsCKMKvnkE5Xz2ZMd8ake2H-vd3MuuhFoaAO9d6rqvcQeknJmhKq3hzWHmJcM0LFmiwlHqEVJbWuBNXsMVoRUrPKKC0u0LNSDoQQI6V8ii6YqGtZG75C_Q72U3RjSANOHR5vAX9xfe9icAPexjTsz7PNyUfAzQnfTM00hBHvUoxh2L_FV3g7_XD5lMbgq5sj-NAFj3ehSSX1gHfgcnbDHnoYxufoSedigRf3_RJ9_7D9tvlUXX_9-HlzdV15KcVY1dxo4o2pBQXQhquGQ6tqoZnSmgnlO6Zl1xkGmjMvXcuUN1w0iirogCp-id6fdY9T00Pr59XZRXvMoZ8vtckF-_dkCLd2n-6soIt1ZBZ4fS-Q088Jymj7UBa33QBpKpbNXjKmpKb_hVIpODOMczND2RnqcyolQ_dwESV2idQe7MK0S6SWLCVm0qs_f3mg_M5wBrw7A2B29C5AtsUHGDy0IYMfbZvCv_R_Afkos1U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1543282338</pqid></control><display><type>article</type><title>Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Budkevich, Tatyana V. ; Giesebrecht, Jan ; Behrmann, Elmar ; Loerke, Justus ; Ramrath, David J.F. ; Mielke, Thorsten ; Ismer, Jochen ; Hildebrand, Peter W. ; Tung, Chang-Shung ; Nierhaus, Knud H. ; Sanbonmatsu, Karissa Y. ; Spahn, Christian M.T.</creator><creatorcontrib>Budkevich, Tatyana V. ; Giesebrecht, Jan ; Behrmann, Elmar ; Loerke, Justus ; Ramrath, David J.F. ; Mielke, Thorsten ; Ismer, Jochen ; Hildebrand, Peter W. ; Tung, Chang-Shung ; Nierhaus, Knud H. ; Sanbonmatsu, Karissa Y. ; Spahn, Christian M.T.</creatorcontrib><description>The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion “subunit rolling.” Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection.
[Display omitted]
•The structure of mammalian POST translocation complex at subnanometer resolution•Structures of two substates of the mammalian decoding complex•Subunit rolling: a eukaryotic-specific conformational change in the ribosome•A seesaw-like model for GTPase activation during mammalian tRNA selection
The analyses of the mammalian 80S ribosome in various steps of translation elongation by cryoelectron microscopy reveal surprising structural distinctions from the bacterial system, including a eukaryotic-specific conformational change called subunit rolling.</description><identifier>ISSN: 0092-8674</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2014.04.044</identifier><identifier>PMID: 24995983</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Anticodon - metabolism ; bacteria ; Codon - metabolism ; cryo-electron microscopy ; Cryoelectron Microscopy ; Crystallography, X-Ray ; guanosinetriphosphatase ; Humans ; mammals ; Mammals - metabolism ; Molecular Sequence Data ; Peptide Chain Elongation, Translational ; Rabbits ; ribosomes ; Ribosomes - chemistry ; RNA, Transfer - metabolism ; Saccharomyces cerevisiae - metabolism ; Tetrahymena thermophila - metabolism ; transfer RNA</subject><ispartof>Cell, 2014-07, Vol.158 (1), p.121-131</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-93870c88941ee7836b3ed69472677246cf275ff82e732c5ad26c834b616efe163</citedby><cites>FETCH-LOGICAL-c554t-93870c88941ee7836b3ed69472677246cf275ff82e732c5ad26c834b616efe163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2014.04.044$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24995983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Budkevich, Tatyana V.</creatorcontrib><creatorcontrib>Giesebrecht, Jan</creatorcontrib><creatorcontrib>Behrmann, Elmar</creatorcontrib><creatorcontrib>Loerke, Justus</creatorcontrib><creatorcontrib>Ramrath, David J.F.</creatorcontrib><creatorcontrib>Mielke, Thorsten</creatorcontrib><creatorcontrib>Ismer, Jochen</creatorcontrib><creatorcontrib>Hildebrand, Peter W.</creatorcontrib><creatorcontrib>Tung, Chang-Shung</creatorcontrib><creatorcontrib>Nierhaus, Knud H.</creatorcontrib><creatorcontrib>Sanbonmatsu, Karissa Y.</creatorcontrib><creatorcontrib>Spahn, Christian M.T.</creatorcontrib><title>Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement</title><title>Cell</title><addtitle>Cell</addtitle><description>The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion “subunit rolling.” Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection.
[Display omitted]
•The structure of mammalian POST translocation complex at subnanometer resolution•Structures of two substates of the mammalian decoding complex•Subunit rolling: a eukaryotic-specific conformational change in the ribosome•A seesaw-like model for GTPase activation during mammalian tRNA selection
The analyses of the mammalian 80S ribosome in various steps of translation elongation by cryoelectron microscopy reveal surprising structural distinctions from the bacterial system, including a eukaryotic-specific conformational change called subunit rolling.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Anticodon - metabolism</subject><subject>bacteria</subject><subject>Codon - metabolism</subject><subject>cryo-electron microscopy</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>guanosinetriphosphatase</subject><subject>Humans</subject><subject>mammals</subject><subject>Mammals - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Peptide Chain Elongation, Translational</subject><subject>Rabbits</subject><subject>ribosomes</subject><subject>Ribosomes - chemistry</subject><subject>RNA, Transfer - metabolism</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Tetrahymena thermophila - metabolism</subject><subject>transfer RNA</subject><issn>0092-8674</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU2LFDEQDaK44-of8CA5eukx30mLCMswfsCKMKvnkE5Xz2ZMd8ake2H-vd3MuuhFoaAO9d6rqvcQeknJmhKq3hzWHmJcM0LFmiwlHqEVJbWuBNXsMVoRUrPKKC0u0LNSDoQQI6V8ii6YqGtZG75C_Q72U3RjSANOHR5vAX9xfe9icAPexjTsz7PNyUfAzQnfTM00hBHvUoxh2L_FV3g7_XD5lMbgq5sj-NAFj3ehSSX1gHfgcnbDHnoYxufoSedigRf3_RJ9_7D9tvlUXX_9-HlzdV15KcVY1dxo4o2pBQXQhquGQ6tqoZnSmgnlO6Zl1xkGmjMvXcuUN1w0iirogCp-id6fdY9T00Pr59XZRXvMoZ8vtckF-_dkCLd2n-6soIt1ZBZ4fS-Q088Jymj7UBa33QBpKpbNXjKmpKb_hVIpODOMczND2RnqcyolQ_dwESV2idQe7MK0S6SWLCVm0qs_f3mg_M5wBrw7A2B29C5AtsUHGDy0IYMfbZvCv_R_Afkos1U</recordid><startdate>20140703</startdate><enddate>20140703</enddate><creator>Budkevich, Tatyana V.</creator><creator>Giesebrecht, Jan</creator><creator>Behrmann, Elmar</creator><creator>Loerke, Justus</creator><creator>Ramrath, David J.F.</creator><creator>Mielke, Thorsten</creator><creator>Ismer, Jochen</creator><creator>Hildebrand, Peter W.</creator><creator>Tung, Chang-Shung</creator><creator>Nierhaus, Knud H.</creator><creator>Sanbonmatsu, Karissa Y.</creator><creator>Spahn, Christian M.T.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140703</creationdate><title>Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement</title><author>Budkevich, Tatyana V. ; Giesebrecht, Jan ; Behrmann, Elmar ; Loerke, Justus ; Ramrath, David J.F. ; Mielke, Thorsten ; Ismer, Jochen ; Hildebrand, Peter W. ; Tung, Chang-Shung ; Nierhaus, Knud H. ; Sanbonmatsu, Karissa Y. ; Spahn, Christian M.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-93870c88941ee7836b3ed69472677246cf275ff82e732c5ad26c834b616efe163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Anticodon - metabolism</topic><topic>bacteria</topic><topic>Codon - metabolism</topic><topic>cryo-electron microscopy</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>guanosinetriphosphatase</topic><topic>Humans</topic><topic>mammals</topic><topic>Mammals - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Peptide Chain Elongation, Translational</topic><topic>Rabbits</topic><topic>ribosomes</topic><topic>Ribosomes - chemistry</topic><topic>RNA, Transfer - metabolism</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Tetrahymena thermophila - metabolism</topic><topic>transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Budkevich, Tatyana V.</creatorcontrib><creatorcontrib>Giesebrecht, Jan</creatorcontrib><creatorcontrib>Behrmann, Elmar</creatorcontrib><creatorcontrib>Loerke, Justus</creatorcontrib><creatorcontrib>Ramrath, David J.F.</creatorcontrib><creatorcontrib>Mielke, Thorsten</creatorcontrib><creatorcontrib>Ismer, Jochen</creatorcontrib><creatorcontrib>Hildebrand, Peter W.</creatorcontrib><creatorcontrib>Tung, Chang-Shung</creatorcontrib><creatorcontrib>Nierhaus, Knud H.</creatorcontrib><creatorcontrib>Sanbonmatsu, Karissa Y.</creatorcontrib><creatorcontrib>Spahn, Christian M.T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Budkevich, Tatyana V.</au><au>Giesebrecht, Jan</au><au>Behrmann, Elmar</au><au>Loerke, Justus</au><au>Ramrath, David J.F.</au><au>Mielke, Thorsten</au><au>Ismer, Jochen</au><au>Hildebrand, Peter W.</au><au>Tung, Chang-Shung</au><au>Nierhaus, Knud H.</au><au>Sanbonmatsu, Karissa Y.</au><au>Spahn, Christian M.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2014-07-03</date><risdate>2014</risdate><volume>158</volume><issue>1</issue><spage>121</spage><epage>131</epage><pages>121-131</pages><issn>0092-8674</issn><eissn>1097-4172</eissn><abstract>The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion “subunit rolling.” Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection.
[Display omitted]
•The structure of mammalian POST translocation complex at subnanometer resolution•Structures of two substates of the mammalian decoding complex•Subunit rolling: a eukaryotic-specific conformational change in the ribosome•A seesaw-like model for GTPase activation during mammalian tRNA selection
The analyses of the mammalian 80S ribosome in various steps of translation elongation by cryoelectron microscopy reveal surprising structural distinctions from the bacterial system, including a eukaryotic-specific conformational change called subunit rolling.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24995983</pmid><doi>10.1016/j.cell.2014.04.044</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8674 |
ispartof | Cell, 2014-07, Vol.158 (1), p.121-131 |
issn | 0092-8674 1097-4172 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4141720 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Amino Acid Sequence Animals Anticodon - metabolism bacteria Codon - metabolism cryo-electron microscopy Cryoelectron Microscopy Crystallography, X-Ray guanosinetriphosphatase Humans mammals Mammals - metabolism Molecular Sequence Data Peptide Chain Elongation, Translational Rabbits ribosomes Ribosomes - chemistry RNA, Transfer - metabolism Saccharomyces cerevisiae - metabolism Tetrahymena thermophila - metabolism transfer RNA |
title | Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20the%20Mammalian%20Elongation%20Cycle%20by%20Subunit%20Rolling:%20A%20Eukaryotic-Specific%20Ribosome%20Rearrangement&rft.jtitle=Cell&rft.au=Budkevich,%20Tatyana%C2%A0V.&rft.date=2014-07-03&rft.volume=158&rft.issue=1&rft.spage=121&rft.epage=131&rft.pages=121-131&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2014.04.044&rft_dat=%3Cproquest_pubme%3E1543282338%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1543282338&rft_id=info:pmid/24995983&rft_els_id=S0092867414006722&rfr_iscdi=true |