Screening for Prediabetes Using Machine Learning Models
The global prevalence of diabetes is rapidly increasing. Studies support the necessity of screening and interventions for prediabetes, which could result in serious complications and diabetes. This study aimed at developing an intelligence-based screening model for prediabetes. Data from the Korean...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2014-01, Vol.2014 (2014), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 2014 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2014 |
creator | Choi, Soo Beom Kim, Won Jae Yoo, Tae Keun Park, Jee Soo Chung, Jai Won Lee, Yong-ho Kang, Eun Seok Kim, Deok Won |
description | The global prevalence of diabetes is rapidly increasing. Studies support the necessity of screening and interventions for prediabetes, which could result in serious complications and diabetes. This study aimed at developing an intelligence-based screening model for prediabetes. Data from the Korean National Health and Nutrition Examination Survey (KNHANES) were used, excluding subjects with diabetes. The KNHANES 2010 data (n=4685) were used for training and internal validation, while data from KNHANES 2011 (n=4566) were used for external validation. We developed two models to screen for prediabetes using an artificial neural network (ANN) and support vector machine (SVM) and performed a systematic evaluation of the models using internal and external validation. We compared the performance of our models with that of a screening score model based on logistic regression analysis for prediabetes that had been developed previously. The SVM model showed the areas under the curve of 0.731 in the external datasets, which is higher than those of the ANN model (0.729) and the screening score model (0.712), respectively. The prescreening methods developed in this study performed better than the screening score model that had been developed previously and may be more effective method for prediabetes screening. |
doi_str_mv | 10.1155/2014/618976 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4140121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25165484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-b5443eb25263103b34b4ac5176fde2a9bf9e9e55ff23716676b6f281a6fedfc23</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK2ePCs5K7E7-5XkIpTiF7QoaMHbspvMtpE2KbtV8d-bGg168rTDzjPvDA8hx0AvAKQcMgpiqCDNErVD-pCINFYJpLtdTZ975CCEF0olJBL2SY9JUFKkok-Sx9wjVmU1j1ztowePRWksbjBEs7D9nZp8UVYYTdD4L2xaF7gMh2TPmWXAo-93QGbXV0_j23hyf3M3Hk3iXPB0E1spBEfLJFMcKLdcWGHy5gzlCmQmsy7DDKV0jvEElEqUVY6lYJTDwuWMD8hlm7t-tSsscqw23iz12pcr4z90bUr9t1OVCz2v37QAQYFBE3DeBuS-DsGj62aB6q0_vfWnW38Nffp7Xcf-CGuAsxZopBTmvfwn7aSFsUHQmQ4WqVSc809Cn4II</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Screening for Prediabetes Using Machine Learning Models</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Choi, Soo Beom ; Kim, Won Jae ; Yoo, Tae Keun ; Park, Jee Soo ; Chung, Jai Won ; Lee, Yong-ho ; Kang, Eun Seok ; Kim, Deok Won</creator><contributor>Elizondo, David A.</contributor><creatorcontrib>Choi, Soo Beom ; Kim, Won Jae ; Yoo, Tae Keun ; Park, Jee Soo ; Chung, Jai Won ; Lee, Yong-ho ; Kang, Eun Seok ; Kim, Deok Won ; Elizondo, David A.</creatorcontrib><description>The global prevalence of diabetes is rapidly increasing. Studies support the necessity of screening and interventions for prediabetes, which could result in serious complications and diabetes. This study aimed at developing an intelligence-based screening model for prediabetes. Data from the Korean National Health and Nutrition Examination Survey (KNHANES) were used, excluding subjects with diabetes. The KNHANES 2010 data (n=4685) were used for training and internal validation, while data from KNHANES 2011 (n=4566) were used for external validation. We developed two models to screen for prediabetes using an artificial neural network (ANN) and support vector machine (SVM) and performed a systematic evaluation of the models using internal and external validation. We compared the performance of our models with that of a screening score model based on logistic regression analysis for prediabetes that had been developed previously. The SVM model showed the areas under the curve of 0.731 in the external datasets, which is higher than those of the ANN model (0.729) and the screening score model (0.712), respectively. The prescreening methods developed in this study performed better than the screening score model that had been developed previously and may be more effective method for prediabetes screening.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2014/618976</identifier><identifier>PMID: 25165484</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Adult ; Area Under Curve ; Humans ; Male ; Neural Networks (Computer) ; Prediabetic State - diagnosis ; Random Allocation ; Republic of Korea ; Risk Factors ; ROC Curve ; Support Vector Machine</subject><ispartof>Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-8</ispartof><rights>Copyright © 2014 Soo Beom Choi et al.</rights><rights>Copyright © 2014 Soo Beom Choi et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-b5443eb25263103b34b4ac5176fde2a9bf9e9e55ff23716676b6f281a6fedfc23</citedby><cites>FETCH-LOGICAL-c438t-b5443eb25263103b34b4ac5176fde2a9bf9e9e55ff23716676b6f281a6fedfc23</cites><orcidid>0000-0003-3892-0630 ; 0000-0002-6219-4942 ; 0000-0002-5294-8675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140121/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140121/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25165484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Elizondo, David A.</contributor><creatorcontrib>Choi, Soo Beom</creatorcontrib><creatorcontrib>Kim, Won Jae</creatorcontrib><creatorcontrib>Yoo, Tae Keun</creatorcontrib><creatorcontrib>Park, Jee Soo</creatorcontrib><creatorcontrib>Chung, Jai Won</creatorcontrib><creatorcontrib>Lee, Yong-ho</creatorcontrib><creatorcontrib>Kang, Eun Seok</creatorcontrib><creatorcontrib>Kim, Deok Won</creatorcontrib><title>Screening for Prediabetes Using Machine Learning Models</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>The global prevalence of diabetes is rapidly increasing. Studies support the necessity of screening and interventions for prediabetes, which could result in serious complications and diabetes. This study aimed at developing an intelligence-based screening model for prediabetes. Data from the Korean National Health and Nutrition Examination Survey (KNHANES) were used, excluding subjects with diabetes. The KNHANES 2010 data (n=4685) were used for training and internal validation, while data from KNHANES 2011 (n=4566) were used for external validation. We developed two models to screen for prediabetes using an artificial neural network (ANN) and support vector machine (SVM) and performed a systematic evaluation of the models using internal and external validation. We compared the performance of our models with that of a screening score model based on logistic regression analysis for prediabetes that had been developed previously. The SVM model showed the areas under the curve of 0.731 in the external datasets, which is higher than those of the ANN model (0.729) and the screening score model (0.712), respectively. The prescreening methods developed in this study performed better than the screening score model that had been developed previously and may be more effective method for prediabetes screening.</description><subject>Adult</subject><subject>Area Under Curve</subject><subject>Humans</subject><subject>Male</subject><subject>Neural Networks (Computer)</subject><subject>Prediabetic State - diagnosis</subject><subject>Random Allocation</subject><subject>Republic of Korea</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>Support Vector Machine</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQhhdRbK2ePCs5K7E7-5XkIpTiF7QoaMHbspvMtpE2KbtV8d-bGg168rTDzjPvDA8hx0AvAKQcMgpiqCDNErVD-pCINFYJpLtdTZ975CCEF0olJBL2SY9JUFKkok-Sx9wjVmU1j1ztowePRWksbjBEs7D9nZp8UVYYTdD4L2xaF7gMh2TPmWXAo-93QGbXV0_j23hyf3M3Hk3iXPB0E1spBEfLJFMcKLdcWGHy5gzlCmQmsy7DDKV0jvEElEqUVY6lYJTDwuWMD8hlm7t-tSsscqw23iz12pcr4z90bUr9t1OVCz2v37QAQYFBE3DeBuS-DsGj62aB6q0_vfWnW38Nffp7Xcf-CGuAsxZopBTmvfwn7aSFsUHQmQ4WqVSc809Cn4II</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Choi, Soo Beom</creator><creator>Kim, Won Jae</creator><creator>Yoo, Tae Keun</creator><creator>Park, Jee Soo</creator><creator>Chung, Jai Won</creator><creator>Lee, Yong-ho</creator><creator>Kang, Eun Seok</creator><creator>Kim, Deok Won</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3892-0630</orcidid><orcidid>https://orcid.org/0000-0002-6219-4942</orcidid><orcidid>https://orcid.org/0000-0002-5294-8675</orcidid></search><sort><creationdate>20140101</creationdate><title>Screening for Prediabetes Using Machine Learning Models</title><author>Choi, Soo Beom ; Kim, Won Jae ; Yoo, Tae Keun ; Park, Jee Soo ; Chung, Jai Won ; Lee, Yong-ho ; Kang, Eun Seok ; Kim, Deok Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-b5443eb25263103b34b4ac5176fde2a9bf9e9e55ff23716676b6f281a6fedfc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Area Under Curve</topic><topic>Humans</topic><topic>Male</topic><topic>Neural Networks (Computer)</topic><topic>Prediabetic State - diagnosis</topic><topic>Random Allocation</topic><topic>Republic of Korea</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Soo Beom</creatorcontrib><creatorcontrib>Kim, Won Jae</creatorcontrib><creatorcontrib>Yoo, Tae Keun</creatorcontrib><creatorcontrib>Park, Jee Soo</creatorcontrib><creatorcontrib>Chung, Jai Won</creatorcontrib><creatorcontrib>Lee, Yong-ho</creatorcontrib><creatorcontrib>Kang, Eun Seok</creatorcontrib><creatorcontrib>Kim, Deok Won</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Soo Beom</au><au>Kim, Won Jae</au><au>Yoo, Tae Keun</au><au>Park, Jee Soo</au><au>Chung, Jai Won</au><au>Lee, Yong-ho</au><au>Kang, Eun Seok</au><au>Kim, Deok Won</au><au>Elizondo, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening for Prediabetes Using Machine Learning Models</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>The global prevalence of diabetes is rapidly increasing. Studies support the necessity of screening and interventions for prediabetes, which could result in serious complications and diabetes. This study aimed at developing an intelligence-based screening model for prediabetes. Data from the Korean National Health and Nutrition Examination Survey (KNHANES) were used, excluding subjects with diabetes. The KNHANES 2010 data (n=4685) were used for training and internal validation, while data from KNHANES 2011 (n=4566) were used for external validation. We developed two models to screen for prediabetes using an artificial neural network (ANN) and support vector machine (SVM) and performed a systematic evaluation of the models using internal and external validation. We compared the performance of our models with that of a screening score model based on logistic regression analysis for prediabetes that had been developed previously. The SVM model showed the areas under the curve of 0.731 in the external datasets, which is higher than those of the ANN model (0.729) and the screening score model (0.712), respectively. The prescreening methods developed in this study performed better than the screening score model that had been developed previously and may be more effective method for prediabetes screening.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>25165484</pmid><doi>10.1155/2014/618976</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3892-0630</orcidid><orcidid>https://orcid.org/0000-0002-6219-4942</orcidid><orcidid>https://orcid.org/0000-0002-5294-8675</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-8 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4140121 |
source | MEDLINE; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Adult Area Under Curve Humans Male Neural Networks (Computer) Prediabetic State - diagnosis Random Allocation Republic of Korea Risk Factors ROC Curve Support Vector Machine |
title | Screening for Prediabetes Using Machine Learning Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20for%20Prediabetes%20Using%20Machine%20Learning%20Models&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Choi,%20Soo%20Beom&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2014/618976&rft_dat=%3Cpubmed_cross%3E25165484%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25165484&rfr_iscdi=true |