Screening for Prediabetes Using Machine Learning Models

The global prevalence of diabetes is rapidly increasing. Studies support the necessity of screening and interventions for prediabetes, which could result in serious complications and diabetes. This study aimed at developing an intelligence-based screening model for prediabetes. Data from the Korean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2014-01, Vol.2014 (2014), p.1-8
Hauptverfasser: Choi, Soo Beom, Kim, Won Jae, Yoo, Tae Keun, Park, Jee Soo, Chung, Jai Won, Lee, Yong-ho, Kang, Eun Seok, Kim, Deok Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2014
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2014
creator Choi, Soo Beom
Kim, Won Jae
Yoo, Tae Keun
Park, Jee Soo
Chung, Jai Won
Lee, Yong-ho
Kang, Eun Seok
Kim, Deok Won
description The global prevalence of diabetes is rapidly increasing. Studies support the necessity of screening and interventions for prediabetes, which could result in serious complications and diabetes. This study aimed at developing an intelligence-based screening model for prediabetes. Data from the Korean National Health and Nutrition Examination Survey (KNHANES) were used, excluding subjects with diabetes. The KNHANES 2010 data (n=4685) were used for training and internal validation, while data from KNHANES 2011 (n=4566) were used for external validation. We developed two models to screen for prediabetes using an artificial neural network (ANN) and support vector machine (SVM) and performed a systematic evaluation of the models using internal and external validation. We compared the performance of our models with that of a screening score model based on logistic regression analysis for prediabetes that had been developed previously. The SVM model showed the areas under the curve of 0.731 in the external datasets, which is higher than those of the ANN model (0.729) and the screening score model (0.712), respectively. The prescreening methods developed in this study performed better than the screening score model that had been developed previously and may be more effective method for prediabetes screening.
doi_str_mv 10.1155/2014/618976
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4140121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25165484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-b5443eb25263103b34b4ac5176fde2a9bf9e9e55ff23716676b6f281a6fedfc23</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK2ePCs5K7E7-5XkIpTiF7QoaMHbspvMtpE2KbtV8d-bGg168rTDzjPvDA8hx0AvAKQcMgpiqCDNErVD-pCINFYJpLtdTZ975CCEF0olJBL2SY9JUFKkok-Sx9wjVmU1j1ztowePRWksbjBEs7D9nZp8UVYYTdD4L2xaF7gMh2TPmWXAo-93QGbXV0_j23hyf3M3Hk3iXPB0E1spBEfLJFMcKLdcWGHy5gzlCmQmsy7DDKV0jvEElEqUVY6lYJTDwuWMD8hlm7t-tSsscqw23iz12pcr4z90bUr9t1OVCz2v37QAQYFBE3DeBuS-DsGj62aB6q0_vfWnW38Nffp7Xcf-CGuAsxZopBTmvfwn7aSFsUHQmQ4WqVSc809Cn4II</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Screening for Prediabetes Using Machine Learning Models</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Choi, Soo Beom ; Kim, Won Jae ; Yoo, Tae Keun ; Park, Jee Soo ; Chung, Jai Won ; Lee, Yong-ho ; Kang, Eun Seok ; Kim, Deok Won</creator><contributor>Elizondo, David A.</contributor><creatorcontrib>Choi, Soo Beom ; Kim, Won Jae ; Yoo, Tae Keun ; Park, Jee Soo ; Chung, Jai Won ; Lee, Yong-ho ; Kang, Eun Seok ; Kim, Deok Won ; Elizondo, David A.</creatorcontrib><description>The global prevalence of diabetes is rapidly increasing. Studies support the necessity of screening and interventions for prediabetes, which could result in serious complications and diabetes. This study aimed at developing an intelligence-based screening model for prediabetes. Data from the Korean National Health and Nutrition Examination Survey (KNHANES) were used, excluding subjects with diabetes. The KNHANES 2010 data (n=4685) were used for training and internal validation, while data from KNHANES 2011 (n=4566) were used for external validation. We developed two models to screen for prediabetes using an artificial neural network (ANN) and support vector machine (SVM) and performed a systematic evaluation of the models using internal and external validation. We compared the performance of our models with that of a screening score model based on logistic regression analysis for prediabetes that had been developed previously. The SVM model showed the areas under the curve of 0.731 in the external datasets, which is higher than those of the ANN model (0.729) and the screening score model (0.712), respectively. The prescreening methods developed in this study performed better than the screening score model that had been developed previously and may be more effective method for prediabetes screening.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2014/618976</identifier><identifier>PMID: 25165484</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Adult ; Area Under Curve ; Humans ; Male ; Neural Networks (Computer) ; Prediabetic State - diagnosis ; Random Allocation ; Republic of Korea ; Risk Factors ; ROC Curve ; Support Vector Machine</subject><ispartof>Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-8</ispartof><rights>Copyright © 2014 Soo Beom Choi et al.</rights><rights>Copyright © 2014 Soo Beom Choi et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-b5443eb25263103b34b4ac5176fde2a9bf9e9e55ff23716676b6f281a6fedfc23</citedby><cites>FETCH-LOGICAL-c438t-b5443eb25263103b34b4ac5176fde2a9bf9e9e55ff23716676b6f281a6fedfc23</cites><orcidid>0000-0003-3892-0630 ; 0000-0002-6219-4942 ; 0000-0002-5294-8675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140121/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140121/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25165484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Elizondo, David A.</contributor><creatorcontrib>Choi, Soo Beom</creatorcontrib><creatorcontrib>Kim, Won Jae</creatorcontrib><creatorcontrib>Yoo, Tae Keun</creatorcontrib><creatorcontrib>Park, Jee Soo</creatorcontrib><creatorcontrib>Chung, Jai Won</creatorcontrib><creatorcontrib>Lee, Yong-ho</creatorcontrib><creatorcontrib>Kang, Eun Seok</creatorcontrib><creatorcontrib>Kim, Deok Won</creatorcontrib><title>Screening for Prediabetes Using Machine Learning Models</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>The global prevalence of diabetes is rapidly increasing. Studies support the necessity of screening and interventions for prediabetes, which could result in serious complications and diabetes. This study aimed at developing an intelligence-based screening model for prediabetes. Data from the Korean National Health and Nutrition Examination Survey (KNHANES) were used, excluding subjects with diabetes. The KNHANES 2010 data (n=4685) were used for training and internal validation, while data from KNHANES 2011 (n=4566) were used for external validation. We developed two models to screen for prediabetes using an artificial neural network (ANN) and support vector machine (SVM) and performed a systematic evaluation of the models using internal and external validation. We compared the performance of our models with that of a screening score model based on logistic regression analysis for prediabetes that had been developed previously. The SVM model showed the areas under the curve of 0.731 in the external datasets, which is higher than those of the ANN model (0.729) and the screening score model (0.712), respectively. The prescreening methods developed in this study performed better than the screening score model that had been developed previously and may be more effective method for prediabetes screening.</description><subject>Adult</subject><subject>Area Under Curve</subject><subject>Humans</subject><subject>Male</subject><subject>Neural Networks (Computer)</subject><subject>Prediabetic State - diagnosis</subject><subject>Random Allocation</subject><subject>Republic of Korea</subject><subject>Risk Factors</subject><subject>ROC Curve</subject><subject>Support Vector Machine</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQhhdRbK2ePCs5K7E7-5XkIpTiF7QoaMHbspvMtpE2KbtV8d-bGg168rTDzjPvDA8hx0AvAKQcMgpiqCDNErVD-pCINFYJpLtdTZ975CCEF0olJBL2SY9JUFKkok-Sx9wjVmU1j1ztowePRWksbjBEs7D9nZp8UVYYTdD4L2xaF7gMh2TPmWXAo-93QGbXV0_j23hyf3M3Hk3iXPB0E1spBEfLJFMcKLdcWGHy5gzlCmQmsy7DDKV0jvEElEqUVY6lYJTDwuWMD8hlm7t-tSsscqw23iz12pcr4z90bUr9t1OVCz2v37QAQYFBE3DeBuS-DsGj62aB6q0_vfWnW38Nffp7Xcf-CGuAsxZopBTmvfwn7aSFsUHQmQ4WqVSc809Cn4II</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Choi, Soo Beom</creator><creator>Kim, Won Jae</creator><creator>Yoo, Tae Keun</creator><creator>Park, Jee Soo</creator><creator>Chung, Jai Won</creator><creator>Lee, Yong-ho</creator><creator>Kang, Eun Seok</creator><creator>Kim, Deok Won</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3892-0630</orcidid><orcidid>https://orcid.org/0000-0002-6219-4942</orcidid><orcidid>https://orcid.org/0000-0002-5294-8675</orcidid></search><sort><creationdate>20140101</creationdate><title>Screening for Prediabetes Using Machine Learning Models</title><author>Choi, Soo Beom ; Kim, Won Jae ; Yoo, Tae Keun ; Park, Jee Soo ; Chung, Jai Won ; Lee, Yong-ho ; Kang, Eun Seok ; Kim, Deok Won</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-b5443eb25263103b34b4ac5176fde2a9bf9e9e55ff23716676b6f281a6fedfc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Area Under Curve</topic><topic>Humans</topic><topic>Male</topic><topic>Neural Networks (Computer)</topic><topic>Prediabetic State - diagnosis</topic><topic>Random Allocation</topic><topic>Republic of Korea</topic><topic>Risk Factors</topic><topic>ROC Curve</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Soo Beom</creatorcontrib><creatorcontrib>Kim, Won Jae</creatorcontrib><creatorcontrib>Yoo, Tae Keun</creatorcontrib><creatorcontrib>Park, Jee Soo</creatorcontrib><creatorcontrib>Chung, Jai Won</creatorcontrib><creatorcontrib>Lee, Yong-ho</creatorcontrib><creatorcontrib>Kang, Eun Seok</creatorcontrib><creatorcontrib>Kim, Deok Won</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Soo Beom</au><au>Kim, Won Jae</au><au>Yoo, Tae Keun</au><au>Park, Jee Soo</au><au>Chung, Jai Won</au><au>Lee, Yong-ho</au><au>Kang, Eun Seok</au><au>Kim, Deok Won</au><au>Elizondo, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening for Prediabetes Using Machine Learning Models</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>The global prevalence of diabetes is rapidly increasing. Studies support the necessity of screening and interventions for prediabetes, which could result in serious complications and diabetes. This study aimed at developing an intelligence-based screening model for prediabetes. Data from the Korean National Health and Nutrition Examination Survey (KNHANES) were used, excluding subjects with diabetes. The KNHANES 2010 data (n=4685) were used for training and internal validation, while data from KNHANES 2011 (n=4566) were used for external validation. We developed two models to screen for prediabetes using an artificial neural network (ANN) and support vector machine (SVM) and performed a systematic evaluation of the models using internal and external validation. We compared the performance of our models with that of a screening score model based on logistic regression analysis for prediabetes that had been developed previously. The SVM model showed the areas under the curve of 0.731 in the external datasets, which is higher than those of the ANN model (0.729) and the screening score model (0.712), respectively. The prescreening methods developed in this study performed better than the screening score model that had been developed previously and may be more effective method for prediabetes screening.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>25165484</pmid><doi>10.1155/2014/618976</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3892-0630</orcidid><orcidid>https://orcid.org/0000-0002-6219-4942</orcidid><orcidid>https://orcid.org/0000-0002-5294-8675</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2014-01, Vol.2014 (2014), p.1-8
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4140121
source MEDLINE; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Adult
Area Under Curve
Humans
Male
Neural Networks (Computer)
Prediabetic State - diagnosis
Random Allocation
Republic of Korea
Risk Factors
ROC Curve
Support Vector Machine
title Screening for Prediabetes Using Machine Learning Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20for%20Prediabetes%20Using%20Machine%20Learning%20Models&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Choi,%20Soo%20Beom&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2014/618976&rft_dat=%3Cpubmed_cross%3E25165484%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25165484&rfr_iscdi=true