Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy

Abnormal autophagy has become a central thread linking neurodegenerative diseases, particularly of the motor neuron. One such disease is spinal muscular atrophy (SMA), a genetic neuromuscular disorder caused by mutations in the SMN1 gene resulting in low levels of Survival Motor Neuron (SMN) protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular neuroscience 2014-07, Vol.61, p.133-140
Hauptverfasser: Custer, Sara K., Androphy, Elliot J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue
container_start_page 133
container_title Molecular and cellular neuroscience
container_volume 61
creator Custer, Sara K.
Androphy, Elliot J.
description Abnormal autophagy has become a central thread linking neurodegenerative diseases, particularly of the motor neuron. One such disease is spinal muscular atrophy (SMA), a genetic neuromuscular disorder caused by mutations in the SMN1 gene resulting in low levels of Survival Motor Neuron (SMN) protein. Despite knowing the causal protein, the exact intracellular processes that are involved in the selective loss of motor neurons remain unclear. Autophagy induction can be helpful or harmful depending on the situation, and we sought to understand the state of the autophagic response in SMA. We show that cell culture and animal models demonstrate induction of autophagy accompanied by attenuated autophagic flux, resulting in the accumulation of autophagosomes and their associated cargo. Expression of the SMN-binding protein a-COP, a known modulator of autophagic flux, can ameliorate this autophagic traffic jam.
doi_str_mv 10.1016/j.mcn.2014.06.006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4135029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044743114000670</els_id><sourcerecordid>1554472723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-734cbfd34829433b4772a6f22f65818cfc6ad0914ce67bc2ce88c9364035c34c3</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxUVoiB0nH6CXomMvu9V_7VIomNCkhUAvyVnIs1pHZldypV2Dv31lnIT20oMYgX7zZvQeQh8pqSmh6suuHiHUjFBRE1UToi7QkpJWVi1n-sPpLkSlBacLdJ3zjhAiWcuv0IKJtuGSNkv0vJ6nuH-x2yPujjm57TzYyceAfcDghgHDPExzctiGrhw_2iHjMXaulNjjvPfBDnicc-FswnZKRe14gy77Arrb17pCz_ffn-5-VI-_Hn7erR8rkFRPleYCNn3HRcNawflGaM2s6hnrlWxoAz0o25GWCnBKb4CBaxpouRKESyi9fIW-nXX382Z0HbgwJTuYfSp7pqOJ1pt_X4J_Mdt4MIJySYoXK_T5VSDF37PLkxl9Pv3bBhfnbKiUQmimGS8oPaOQYi5O9e9jKDGnOMzOlDjMKQ5DlClxlJ5Pf-_33vHmfwG-noHipzt4l0wG7wK4zicHk-mi_4_8H3TenO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554472723</pqid></control><display><type>article</type><title>Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Custer, Sara K. ; Androphy, Elliot J.</creator><creatorcontrib>Custer, Sara K. ; Androphy, Elliot J.</creatorcontrib><description>Abnormal autophagy has become a central thread linking neurodegenerative diseases, particularly of the motor neuron. One such disease is spinal muscular atrophy (SMA), a genetic neuromuscular disorder caused by mutations in the SMN1 gene resulting in low levels of Survival Motor Neuron (SMN) protein. Despite knowing the causal protein, the exact intracellular processes that are involved in the selective loss of motor neurons remain unclear. Autophagy induction can be helpful or harmful depending on the situation, and we sought to understand the state of the autophagic response in SMA. We show that cell culture and animal models demonstrate induction of autophagy accompanied by attenuated autophagic flux, resulting in the accumulation of autophagosomes and their associated cargo. Expression of the SMN-binding protein a-COP, a known modulator of autophagic flux, can ameliorate this autophagic traffic jam.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2014.06.006</identifier><identifier>PMID: 24983518</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Autophagy ; Autophagy - physiology ; Cell Line, Transformed ; Disease Models, Animal ; Doxycycline - pharmacology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Gene Expression Regulation - genetics ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Mice ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Motor neuron ; Motor Neurons - physiology ; Muscular Atrophy, Spinal - genetics ; Muscular Atrophy, Spinal - pathology ; Muscular Atrophy, Spinal - physiopathology ; Red Fluorescent Protein ; RNA, Small Interfering - metabolism ; RNA, Small Interfering - pharmacology ; Spinal muscular atrophy ; Survival motor neuron ; Survival of Motor Neuron 1 Protein - genetics ; Survival of Motor Neuron 1 Protein - metabolism ; Time Factors ; Transfection</subject><ispartof>Molecular and cellular neuroscience, 2014-07, Vol.61, p.133-140</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-734cbfd34829433b4772a6f22f65818cfc6ad0914ce67bc2ce88c9364035c34c3</citedby><cites>FETCH-LOGICAL-c517t-734cbfd34829433b4772a6f22f65818cfc6ad0914ce67bc2ce88c9364035c34c3</cites><orcidid>0000-0002-8104-0703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mcn.2014.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24983518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Custer, Sara K.</creatorcontrib><creatorcontrib>Androphy, Elliot J.</creatorcontrib><title>Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>Abnormal autophagy has become a central thread linking neurodegenerative diseases, particularly of the motor neuron. One such disease is spinal muscular atrophy (SMA), a genetic neuromuscular disorder caused by mutations in the SMN1 gene resulting in low levels of Survival Motor Neuron (SMN) protein. Despite knowing the causal protein, the exact intracellular processes that are involved in the selective loss of motor neurons remain unclear. Autophagy induction can be helpful or harmful depending on the situation, and we sought to understand the state of the autophagic response in SMA. We show that cell culture and animal models demonstrate induction of autophagy accompanied by attenuated autophagic flux, resulting in the accumulation of autophagosomes and their associated cargo. Expression of the SMN-binding protein a-COP, a known modulator of autophagic flux, can ameliorate this autophagic traffic jam.</description><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Cell Line, Transformed</subject><subject>Disease Models, Animal</subject><subject>Doxycycline - pharmacology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Gene Expression Regulation - genetics</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Motor neuron</subject><subject>Motor Neurons - physiology</subject><subject>Muscular Atrophy, Spinal - genetics</subject><subject>Muscular Atrophy, Spinal - pathology</subject><subject>Muscular Atrophy, Spinal - physiopathology</subject><subject>Red Fluorescent Protein</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>Spinal muscular atrophy</subject><subject>Survival motor neuron</subject><subject>Survival of Motor Neuron 1 Protein - genetics</subject><subject>Survival of Motor Neuron 1 Protein - metabolism</subject><subject>Time Factors</subject><subject>Transfection</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9rGzEQxUVoiB0nH6CXomMvu9V_7VIomNCkhUAvyVnIs1pHZldypV2Dv31lnIT20oMYgX7zZvQeQh8pqSmh6suuHiHUjFBRE1UToi7QkpJWVi1n-sPpLkSlBacLdJ3zjhAiWcuv0IKJtuGSNkv0vJ6nuH-x2yPujjm57TzYyceAfcDghgHDPExzctiGrhw_2iHjMXaulNjjvPfBDnicc-FswnZKRe14gy77Arrb17pCz_ffn-5-VI-_Hn7erR8rkFRPleYCNn3HRcNawflGaM2s6hnrlWxoAz0o25GWCnBKb4CBaxpouRKESyi9fIW-nXX382Z0HbgwJTuYfSp7pqOJ1pt_X4J_Mdt4MIJySYoXK_T5VSDF37PLkxl9Pv3bBhfnbKiUQmimGS8oPaOQYi5O9e9jKDGnOMzOlDjMKQ5DlClxlJ5Pf-_33vHmfwG-noHipzt4l0wG7wK4zicHk-mi_4_8H3TenO8</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Custer, Sara K.</creator><creator>Androphy, Elliot J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8104-0703</orcidid></search><sort><creationdate>20140701</creationdate><title>Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy</title><author>Custer, Sara K. ; Androphy, Elliot J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-734cbfd34829433b4772a6f22f65818cfc6ad0914ce67bc2ce88c9364035c34c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Cell Line, Transformed</topic><topic>Disease Models, Animal</topic><topic>Doxycycline - pharmacology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Gene Expression Regulation - genetics</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Motor neuron</topic><topic>Motor Neurons - physiology</topic><topic>Muscular Atrophy, Spinal - genetics</topic><topic>Muscular Atrophy, Spinal - pathology</topic><topic>Muscular Atrophy, Spinal - physiopathology</topic><topic>Red Fluorescent Protein</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>Spinal muscular atrophy</topic><topic>Survival motor neuron</topic><topic>Survival of Motor Neuron 1 Protein - genetics</topic><topic>Survival of Motor Neuron 1 Protein - metabolism</topic><topic>Time Factors</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Custer, Sara K.</creatorcontrib><creatorcontrib>Androphy, Elliot J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Custer, Sara K.</au><au>Androphy, Elliot J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>61</volume><spage>133</spage><epage>140</epage><pages>133-140</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>Abnormal autophagy has become a central thread linking neurodegenerative diseases, particularly of the motor neuron. One such disease is spinal muscular atrophy (SMA), a genetic neuromuscular disorder caused by mutations in the SMN1 gene resulting in low levels of Survival Motor Neuron (SMN) protein. Despite knowing the causal protein, the exact intracellular processes that are involved in the selective loss of motor neurons remain unclear. Autophagy induction can be helpful or harmful depending on the situation, and we sought to understand the state of the autophagic response in SMA. We show that cell culture and animal models demonstrate induction of autophagy accompanied by attenuated autophagic flux, resulting in the accumulation of autophagosomes and their associated cargo. Expression of the SMN-binding protein a-COP, a known modulator of autophagic flux, can ameliorate this autophagic traffic jam.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24983518</pmid><doi>10.1016/j.mcn.2014.06.006</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8104-0703</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1044-7431
ispartof Molecular and cellular neuroscience, 2014-07, Vol.61, p.133-140
issn 1044-7431
1095-9327
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4135029
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Autophagy
Autophagy - physiology
Cell Line, Transformed
Disease Models, Animal
Doxycycline - pharmacology
Fibroblasts - drug effects
Fibroblasts - metabolism
Gene Expression Regulation - genetics
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Mice
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Motor neuron
Motor Neurons - physiology
Muscular Atrophy, Spinal - genetics
Muscular Atrophy, Spinal - pathology
Muscular Atrophy, Spinal - physiopathology
Red Fluorescent Protein
RNA, Small Interfering - metabolism
RNA, Small Interfering - pharmacology
Spinal muscular atrophy
Survival motor neuron
Survival of Motor Neuron 1 Protein - genetics
Survival of Motor Neuron 1 Protein - metabolism
Time Factors
Transfection
title Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagy%20dysregulation%20in%20cell%20culture%20and%20animals%20models%20of%20spinal%20muscular%20atrophy&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Custer,%20Sara%20K.&rft.date=2014-07-01&rft.volume=61&rft.spage=133&rft.epage=140&rft.pages=133-140&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2014.06.006&rft_dat=%3Cproquest_pubme%3E1554472723%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554472723&rft_id=info:pmid/24983518&rft_els_id=S1044743114000670&rfr_iscdi=true