Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy
Abnormal autophagy has become a central thread linking neurodegenerative diseases, particularly of the motor neuron. One such disease is spinal muscular atrophy (SMA), a genetic neuromuscular disorder caused by mutations in the SMN1 gene resulting in low levels of Survival Motor Neuron (SMN) protein...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular neuroscience 2014-07, Vol.61, p.133-140 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140 |
---|---|
container_issue | |
container_start_page | 133 |
container_title | Molecular and cellular neuroscience |
container_volume | 61 |
creator | Custer, Sara K. Androphy, Elliot J. |
description | Abnormal autophagy has become a central thread linking neurodegenerative diseases, particularly of the motor neuron. One such disease is spinal muscular atrophy (SMA), a genetic neuromuscular disorder caused by mutations in the SMN1 gene resulting in low levels of Survival Motor Neuron (SMN) protein. Despite knowing the causal protein, the exact intracellular processes that are involved in the selective loss of motor neurons remain unclear. Autophagy induction can be helpful or harmful depending on the situation, and we sought to understand the state of the autophagic response in SMA. We show that cell culture and animal models demonstrate induction of autophagy accompanied by attenuated autophagic flux, resulting in the accumulation of autophagosomes and their associated cargo. Expression of the SMN-binding protein a-COP, a known modulator of autophagic flux, can ameliorate this autophagic traffic jam. |
doi_str_mv | 10.1016/j.mcn.2014.06.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4135029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044743114000670</els_id><sourcerecordid>1554472723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-734cbfd34829433b4772a6f22f65818cfc6ad0914ce67bc2ce88c9364035c34c3</originalsourceid><addsrcrecordid>eNp9kU9rGzEQxUVoiB0nH6CXomMvu9V_7VIomNCkhUAvyVnIs1pHZldypV2Dv31lnIT20oMYgX7zZvQeQh8pqSmh6suuHiHUjFBRE1UToi7QkpJWVi1n-sPpLkSlBacLdJ3zjhAiWcuv0IKJtuGSNkv0vJ6nuH-x2yPujjm57TzYyceAfcDghgHDPExzctiGrhw_2iHjMXaulNjjvPfBDnicc-FswnZKRe14gy77Arrb17pCz_ffn-5-VI-_Hn7erR8rkFRPleYCNn3HRcNawflGaM2s6hnrlWxoAz0o25GWCnBKb4CBaxpouRKESyi9fIW-nXX382Z0HbgwJTuYfSp7pqOJ1pt_X4J_Mdt4MIJySYoXK_T5VSDF37PLkxl9Pv3bBhfnbKiUQmimGS8oPaOQYi5O9e9jKDGnOMzOlDjMKQ5DlClxlJ5Pf-_33vHmfwG-noHipzt4l0wG7wK4zicHk-mi_4_8H3TenO8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554472723</pqid></control><display><type>article</type><title>Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Custer, Sara K. ; Androphy, Elliot J.</creator><creatorcontrib>Custer, Sara K. ; Androphy, Elliot J.</creatorcontrib><description>Abnormal autophagy has become a central thread linking neurodegenerative diseases, particularly of the motor neuron. One such disease is spinal muscular atrophy (SMA), a genetic neuromuscular disorder caused by mutations in the SMN1 gene resulting in low levels of Survival Motor Neuron (SMN) protein. Despite knowing the causal protein, the exact intracellular processes that are involved in the selective loss of motor neurons remain unclear. Autophagy induction can be helpful or harmful depending on the situation, and we sought to understand the state of the autophagic response in SMA. We show that cell culture and animal models demonstrate induction of autophagy accompanied by attenuated autophagic flux, resulting in the accumulation of autophagosomes and their associated cargo. Expression of the SMN-binding protein a-COP, a known modulator of autophagic flux, can ameliorate this autophagic traffic jam.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2014.06.006</identifier><identifier>PMID: 24983518</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Autophagy ; Autophagy - physiology ; Cell Line, Transformed ; Disease Models, Animal ; Doxycycline - pharmacology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Gene Expression Regulation - genetics ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Mice ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; Motor neuron ; Motor Neurons - physiology ; Muscular Atrophy, Spinal - genetics ; Muscular Atrophy, Spinal - pathology ; Muscular Atrophy, Spinal - physiopathology ; Red Fluorescent Protein ; RNA, Small Interfering - metabolism ; RNA, Small Interfering - pharmacology ; Spinal muscular atrophy ; Survival motor neuron ; Survival of Motor Neuron 1 Protein - genetics ; Survival of Motor Neuron 1 Protein - metabolism ; Time Factors ; Transfection</subject><ispartof>Molecular and cellular neuroscience, 2014-07, Vol.61, p.133-140</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-734cbfd34829433b4772a6f22f65818cfc6ad0914ce67bc2ce88c9364035c34c3</citedby><cites>FETCH-LOGICAL-c517t-734cbfd34829433b4772a6f22f65818cfc6ad0914ce67bc2ce88c9364035c34c3</cites><orcidid>0000-0002-8104-0703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mcn.2014.06.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24983518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Custer, Sara K.</creatorcontrib><creatorcontrib>Androphy, Elliot J.</creatorcontrib><title>Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>Abnormal autophagy has become a central thread linking neurodegenerative diseases, particularly of the motor neuron. One such disease is spinal muscular atrophy (SMA), a genetic neuromuscular disorder caused by mutations in the SMN1 gene resulting in low levels of Survival Motor Neuron (SMN) protein. Despite knowing the causal protein, the exact intracellular processes that are involved in the selective loss of motor neurons remain unclear. Autophagy induction can be helpful or harmful depending on the situation, and we sought to understand the state of the autophagic response in SMA. We show that cell culture and animal models demonstrate induction of autophagy accompanied by attenuated autophagic flux, resulting in the accumulation of autophagosomes and their associated cargo. Expression of the SMN-binding protein a-COP, a known modulator of autophagic flux, can ameliorate this autophagic traffic jam.</description><subject>Animals</subject><subject>Autophagy</subject><subject>Autophagy - physiology</subject><subject>Cell Line, Transformed</subject><subject>Disease Models, Animal</subject><subject>Doxycycline - pharmacology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Gene Expression Regulation - genetics</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Motor neuron</subject><subject>Motor Neurons - physiology</subject><subject>Muscular Atrophy, Spinal - genetics</subject><subject>Muscular Atrophy, Spinal - pathology</subject><subject>Muscular Atrophy, Spinal - physiopathology</subject><subject>Red Fluorescent Protein</subject><subject>RNA, Small Interfering - metabolism</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>Spinal muscular atrophy</subject><subject>Survival motor neuron</subject><subject>Survival of Motor Neuron 1 Protein - genetics</subject><subject>Survival of Motor Neuron 1 Protein - metabolism</subject><subject>Time Factors</subject><subject>Transfection</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9rGzEQxUVoiB0nH6CXomMvu9V_7VIomNCkhUAvyVnIs1pHZldypV2Dv31lnIT20oMYgX7zZvQeQh8pqSmh6suuHiHUjFBRE1UToi7QkpJWVi1n-sPpLkSlBacLdJ3zjhAiWcuv0IKJtuGSNkv0vJ6nuH-x2yPujjm57TzYyceAfcDghgHDPExzctiGrhw_2iHjMXaulNjjvPfBDnicc-FswnZKRe14gy77Arrb17pCz_ffn-5-VI-_Hn7erR8rkFRPleYCNn3HRcNawflGaM2s6hnrlWxoAz0o25GWCnBKb4CBaxpouRKESyi9fIW-nXX382Z0HbgwJTuYfSp7pqOJ1pt_X4J_Mdt4MIJySYoXK_T5VSDF37PLkxl9Pv3bBhfnbKiUQmimGS8oPaOQYi5O9e9jKDGnOMzOlDjMKQ5DlClxlJ5Pf-_33vHmfwG-noHipzt4l0wG7wK4zicHk-mi_4_8H3TenO8</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Custer, Sara K.</creator><creator>Androphy, Elliot J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8104-0703</orcidid></search><sort><creationdate>20140701</creationdate><title>Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy</title><author>Custer, Sara K. ; Androphy, Elliot J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-734cbfd34829433b4772a6f22f65818cfc6ad0914ce67bc2ce88c9364035c34c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Autophagy</topic><topic>Autophagy - physiology</topic><topic>Cell Line, Transformed</topic><topic>Disease Models, Animal</topic><topic>Doxycycline - pharmacology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Gene Expression Regulation - genetics</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Motor neuron</topic><topic>Motor Neurons - physiology</topic><topic>Muscular Atrophy, Spinal - genetics</topic><topic>Muscular Atrophy, Spinal - pathology</topic><topic>Muscular Atrophy, Spinal - physiopathology</topic><topic>Red Fluorescent Protein</topic><topic>RNA, Small Interfering - metabolism</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>Spinal muscular atrophy</topic><topic>Survival motor neuron</topic><topic>Survival of Motor Neuron 1 Protein - genetics</topic><topic>Survival of Motor Neuron 1 Protein - metabolism</topic><topic>Time Factors</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Custer, Sara K.</creatorcontrib><creatorcontrib>Androphy, Elliot J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Custer, Sara K.</au><au>Androphy, Elliot J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>61</volume><spage>133</spage><epage>140</epage><pages>133-140</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>Abnormal autophagy has become a central thread linking neurodegenerative diseases, particularly of the motor neuron. One such disease is spinal muscular atrophy (SMA), a genetic neuromuscular disorder caused by mutations in the SMN1 gene resulting in low levels of Survival Motor Neuron (SMN) protein. Despite knowing the causal protein, the exact intracellular processes that are involved in the selective loss of motor neurons remain unclear. Autophagy induction can be helpful or harmful depending on the situation, and we sought to understand the state of the autophagic response in SMA. We show that cell culture and animal models demonstrate induction of autophagy accompanied by attenuated autophagic flux, resulting in the accumulation of autophagosomes and their associated cargo. Expression of the SMN-binding protein a-COP, a known modulator of autophagic flux, can ameliorate this autophagic traffic jam.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24983518</pmid><doi>10.1016/j.mcn.2014.06.006</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8104-0703</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-7431 |
ispartof | Molecular and cellular neuroscience, 2014-07, Vol.61, p.133-140 |
issn | 1044-7431 1095-9327 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4135029 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Autophagy Autophagy - physiology Cell Line, Transformed Disease Models, Animal Doxycycline - pharmacology Fibroblasts - drug effects Fibroblasts - metabolism Gene Expression Regulation - genetics Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Luminescent Proteins - genetics Luminescent Proteins - metabolism Mice Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Motor neuron Motor Neurons - physiology Muscular Atrophy, Spinal - genetics Muscular Atrophy, Spinal - pathology Muscular Atrophy, Spinal - physiopathology Red Fluorescent Protein RNA, Small Interfering - metabolism RNA, Small Interfering - pharmacology Spinal muscular atrophy Survival motor neuron Survival of Motor Neuron 1 Protein - genetics Survival of Motor Neuron 1 Protein - metabolism Time Factors Transfection |
title | Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autophagy%20dysregulation%20in%20cell%20culture%20and%20animals%20models%20of%20spinal%20muscular%20atrophy&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Custer,%20Sara%20K.&rft.date=2014-07-01&rft.volume=61&rft.spage=133&rft.epage=140&rft.pages=133-140&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2014.06.006&rft_dat=%3Cproquest_pubme%3E1554472723%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554472723&rft_id=info:pmid/24983518&rft_els_id=S1044743114000670&rfr_iscdi=true |