Unlocking the vault: next‐generation museum population genomics
Natural history museum collections provide unique resources for understanding how species respond to environmental change, including the abrupt, anthropogenic climate change of the past century. Ideally, researchers would conduct genome‐scale screening of museum specimens to explore the evolutionary...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2013-12, Vol.22 (24), p.6018-6032 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6032 |
---|---|
container_issue | 24 |
container_start_page | 6018 |
container_title | Molecular ecology |
container_volume | 22 |
creator | Bi, Ke Linderoth, Tyler Vanderpool, Dan Good, Jeffrey M Nielsen, Rasmus Moritz, Craig |
description | Natural history museum collections provide unique resources for understanding how species respond to environmental change, including the abrupt, anthropogenic climate change of the past century. Ideally, researchers would conduct genome‐scale screening of museum specimens to explore the evolutionary consequences of environmental changes, but to date such analyses have been severely limited by the numerous challenges of working with the highly degraded DNA typical of historic samples. Here, we circumvent these challenges by using custom, multiplexed, exon capture to enrich and sequence ~11 000 exons (~4 Mb) from early 20th‐century museum skins. We used this approach to test for changes in genomic diversity accompanying a climate‐related range retraction in the alpine chipmunks (Tamias alpinus) in the high Sierra Nevada area of California, USA. We developed robust bioinformatic pipelines that rigorously detect and filter out base misincorporations in DNA derived from skins, most of which likely resulted from postmortem damage. Furthermore, to accommodate genotyping uncertainties associated with low‐medium coverage data, we applied a recently developed probabilistic method to call single‐nucleotide polymorphisms and estimate allele frequencies and the joint site frequency spectrum. Our results show increased genetic subdivision following range retraction, but no change in overall genetic diversity at either nonsynonymous or synonymous sites. This case study showcases the advantages of integrating emerging genomic and statistical tools in museum collection‐based population genomic applications. Such technical advances greatly enhance the value of museum collections, even where a pre‐existing reference is lacking and points to a broad range of potential applications in evolutionary and conservation biology. |
doi_str_mv | 10.1111/mec.12516 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4134471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147099071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6346-caf8fa40950744be6a6669457616c266c365cfd389841abd724460cf9ba2cd7f3</originalsourceid><addsrcrecordid>eNp1kc9uEzEQhy0EoqFw4AUgEkKCw7Ye2zu72wNSFUqKVEAIIrhZjuNN3e7awd4t7Y1H6DP2SXDYNPyR8MWS55uZz_oR8hjoHqSz3xq9BywHvENGwDHPWCW-3iUjWiHLgJZ8hzyI8YxS4CzP75MdJgBKxHJEDmeu8frcuuW4OzXjC9U33cHYmcvu5sf10jgTVGe9G7d9NH07XvlV3wwvqehbq-NDcq9WTTSPNvcumb05-jw5zk4-TN9ODk8yjVxgplVd1krQKqeFEHODChErkRcIqBmiTt66XvCyKgWo-aJgQiDVdTVXTC-Kmu-SV8PcVT9vzUIb1wXVyFWwrQpX0isr_644eyqX_kIK4EIUkAa82AwI_ltvYidbG7VpGuWM76MEUTHkLMkm9Nk_6Jnvg0vfSxTmIKDANfVyoHTwMQZTb2WAynUwMgUjfwWT2Cd_2m_J2yQS8HwDqKhVUwfltI2_uRJoTqlI3P7AfbeNufr_RvnuaHK7Ohs6bOzM5bZDhXOJBS9y-eX9VL6e5uJjJUAeJ_7pwNfKS7UMyWL2iVEQlK4FCsp_AmozvT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465141766</pqid></control><display><type>article</type><title>Unlocking the vault: next‐generation museum population genomics</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Bi, Ke ; Linderoth, Tyler ; Vanderpool, Dan ; Good, Jeffrey M ; Nielsen, Rasmus ; Moritz, Craig</creator><creatorcontrib>Bi, Ke ; Linderoth, Tyler ; Vanderpool, Dan ; Good, Jeffrey M ; Nielsen, Rasmus ; Moritz, Craig</creatorcontrib><description>Natural history museum collections provide unique resources for understanding how species respond to environmental change, including the abrupt, anthropogenic climate change of the past century. Ideally, researchers would conduct genome‐scale screening of museum specimens to explore the evolutionary consequences of environmental changes, but to date such analyses have been severely limited by the numerous challenges of working with the highly degraded DNA typical of historic samples. Here, we circumvent these challenges by using custom, multiplexed, exon capture to enrich and sequence ~11 000 exons (~4 Mb) from early 20th‐century museum skins. We used this approach to test for changes in genomic diversity accompanying a climate‐related range retraction in the alpine chipmunks (Tamias alpinus) in the high Sierra Nevada area of California, USA. We developed robust bioinformatic pipelines that rigorously detect and filter out base misincorporations in DNA derived from skins, most of which likely resulted from postmortem damage. Furthermore, to accommodate genotyping uncertainties associated with low‐medium coverage data, we applied a recently developed probabilistic method to call single‐nucleotide polymorphisms and estimate allele frequencies and the joint site frequency spectrum. Our results show increased genetic subdivision following range retraction, but no change in overall genetic diversity at either nonsynonymous or synonymous sites. This case study showcases the advantages of integrating emerging genomic and statistical tools in museum collection‐based population genomic applications. Such technical advances greatly enhance the value of museum collections, even where a pre‐existing reference is lacking and points to a broad range of potential applications in evolutionary and conservation biology.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.12516</identifier><identifier>PMID: 24118668</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Animals ; bioinformatics ; Biological and medical sciences ; Biological evolution ; California ; case studies ; Climate Change ; DNA ; DNA Damage ; exon capture ; Exons ; Fundamental and applied biological sciences. Psychology ; Gene Frequency ; genetic variation ; Genetics of eukaryotes. Biological and molecular evolution ; Genetics, Population - methods ; Genomics - methods ; Genotype ; Mammalia ; metagenomics ; museum skins ; Museums ; natural history ; natural history museum collections ; nonmodel organisms ; Polymorphism, Single Nucleotide ; Population genetics, reproduction patterns ; researchers ; Sciuridae - genetics ; screening ; Sequence Analysis, DNA ; Tamias ; Tamias alpinus ; Transcriptome ; Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><ispartof>Molecular ecology, 2013-12, Vol.22 (24), p.6018-6032</ispartof><rights>2013 John Wiley & Sons Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2013 John Wiley & Sons Ltd.</rights><rights>Copyright © 2013 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6346-caf8fa40950744be6a6669457616c266c365cfd389841abd724460cf9ba2cd7f3</citedby><cites>FETCH-LOGICAL-c6346-caf8fa40950744be6a6669457616c266c365cfd389841abd724460cf9ba2cd7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.12516$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.12516$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28105004$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24118668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bi, Ke</creatorcontrib><creatorcontrib>Linderoth, Tyler</creatorcontrib><creatorcontrib>Vanderpool, Dan</creatorcontrib><creatorcontrib>Good, Jeffrey M</creatorcontrib><creatorcontrib>Nielsen, Rasmus</creatorcontrib><creatorcontrib>Moritz, Craig</creatorcontrib><title>Unlocking the vault: next‐generation museum population genomics</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Natural history museum collections provide unique resources for understanding how species respond to environmental change, including the abrupt, anthropogenic climate change of the past century. Ideally, researchers would conduct genome‐scale screening of museum specimens to explore the evolutionary consequences of environmental changes, but to date such analyses have been severely limited by the numerous challenges of working with the highly degraded DNA typical of historic samples. Here, we circumvent these challenges by using custom, multiplexed, exon capture to enrich and sequence ~11 000 exons (~4 Mb) from early 20th‐century museum skins. We used this approach to test for changes in genomic diversity accompanying a climate‐related range retraction in the alpine chipmunks (Tamias alpinus) in the high Sierra Nevada area of California, USA. We developed robust bioinformatic pipelines that rigorously detect and filter out base misincorporations in DNA derived from skins, most of which likely resulted from postmortem damage. Furthermore, to accommodate genotyping uncertainties associated with low‐medium coverage data, we applied a recently developed probabilistic method to call single‐nucleotide polymorphisms and estimate allele frequencies and the joint site frequency spectrum. Our results show increased genetic subdivision following range retraction, but no change in overall genetic diversity at either nonsynonymous or synonymous sites. This case study showcases the advantages of integrating emerging genomic and statistical tools in museum collection‐based population genomic applications. Such technical advances greatly enhance the value of museum collections, even where a pre‐existing reference is lacking and points to a broad range of potential applications in evolutionary and conservation biology.</description><subject>Animals</subject><subject>bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biological evolution</subject><subject>California</subject><subject>case studies</subject><subject>Climate Change</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>exon capture</subject><subject>Exons</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Frequency</subject><subject>genetic variation</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genetics, Population - methods</subject><subject>Genomics - methods</subject><subject>Genotype</subject><subject>Mammalia</subject><subject>metagenomics</subject><subject>museum skins</subject><subject>Museums</subject><subject>natural history</subject><subject>natural history museum collections</subject><subject>nonmodel organisms</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Population genetics, reproduction patterns</subject><subject>researchers</subject><subject>Sciuridae - genetics</subject><subject>screening</subject><subject>Sequence Analysis, DNA</subject><subject>Tamias</subject><subject>Tamias alpinus</subject><subject>Transcriptome</subject><subject>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9uEzEQhy0EoqFw4AUgEkKCw7Ye2zu72wNSFUqKVEAIIrhZjuNN3e7awd4t7Y1H6DP2SXDYNPyR8MWS55uZz_oR8hjoHqSz3xq9BywHvENGwDHPWCW-3iUjWiHLgJZ8hzyI8YxS4CzP75MdJgBKxHJEDmeu8frcuuW4OzXjC9U33cHYmcvu5sf10jgTVGe9G7d9NH07XvlV3wwvqehbq-NDcq9WTTSPNvcumb05-jw5zk4-TN9ODk8yjVxgplVd1krQKqeFEHODChErkRcIqBmiTt66XvCyKgWo-aJgQiDVdTVXTC-Kmu-SV8PcVT9vzUIb1wXVyFWwrQpX0isr_644eyqX_kIK4EIUkAa82AwI_ltvYidbG7VpGuWM76MEUTHkLMkm9Nk_6Jnvg0vfSxTmIKDANfVyoHTwMQZTb2WAynUwMgUjfwWT2Cd_2m_J2yQS8HwDqKhVUwfltI2_uRJoTqlI3P7AfbeNufr_RvnuaHK7Ohs6bOzM5bZDhXOJBS9y-eX9VL6e5uJjJUAeJ_7pwNfKS7UMyWL2iVEQlK4FCsp_AmozvT0</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Bi, Ke</creator><creator>Linderoth, Tyler</creator><creator>Vanderpool, Dan</creator><creator>Good, Jeffrey M</creator><creator>Nielsen, Rasmus</creator><creator>Moritz, Craig</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201312</creationdate><title>Unlocking the vault: next‐generation museum population genomics</title><author>Bi, Ke ; Linderoth, Tyler ; Vanderpool, Dan ; Good, Jeffrey M ; Nielsen, Rasmus ; Moritz, Craig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6346-caf8fa40950744be6a6669457616c266c365cfd389841abd724460cf9ba2cd7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biological evolution</topic><topic>California</topic><topic>case studies</topic><topic>Climate Change</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>exon capture</topic><topic>Exons</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Frequency</topic><topic>genetic variation</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genetics, Population - methods</topic><topic>Genomics - methods</topic><topic>Genotype</topic><topic>Mammalia</topic><topic>metagenomics</topic><topic>museum skins</topic><topic>Museums</topic><topic>natural history</topic><topic>natural history museum collections</topic><topic>nonmodel organisms</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Population genetics, reproduction patterns</topic><topic>researchers</topic><topic>Sciuridae - genetics</topic><topic>screening</topic><topic>Sequence Analysis, DNA</topic><topic>Tamias</topic><topic>Tamias alpinus</topic><topic>Transcriptome</topic><topic>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Ke</creatorcontrib><creatorcontrib>Linderoth, Tyler</creatorcontrib><creatorcontrib>Vanderpool, Dan</creatorcontrib><creatorcontrib>Good, Jeffrey M</creatorcontrib><creatorcontrib>Nielsen, Rasmus</creatorcontrib><creatorcontrib>Moritz, Craig</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Ke</au><au>Linderoth, Tyler</au><au>Vanderpool, Dan</au><au>Good, Jeffrey M</au><au>Nielsen, Rasmus</au><au>Moritz, Craig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unlocking the vault: next‐generation museum population genomics</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2013-12</date><risdate>2013</risdate><volume>22</volume><issue>24</issue><spage>6018</spage><epage>6032</epage><pages>6018-6032</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Natural history museum collections provide unique resources for understanding how species respond to environmental change, including the abrupt, anthropogenic climate change of the past century. Ideally, researchers would conduct genome‐scale screening of museum specimens to explore the evolutionary consequences of environmental changes, but to date such analyses have been severely limited by the numerous challenges of working with the highly degraded DNA typical of historic samples. Here, we circumvent these challenges by using custom, multiplexed, exon capture to enrich and sequence ~11 000 exons (~4 Mb) from early 20th‐century museum skins. We used this approach to test for changes in genomic diversity accompanying a climate‐related range retraction in the alpine chipmunks (Tamias alpinus) in the high Sierra Nevada area of California, USA. We developed robust bioinformatic pipelines that rigorously detect and filter out base misincorporations in DNA derived from skins, most of which likely resulted from postmortem damage. Furthermore, to accommodate genotyping uncertainties associated with low‐medium coverage data, we applied a recently developed probabilistic method to call single‐nucleotide polymorphisms and estimate allele frequencies and the joint site frequency spectrum. Our results show increased genetic subdivision following range retraction, but no change in overall genetic diversity at either nonsynonymous or synonymous sites. This case study showcases the advantages of integrating emerging genomic and statistical tools in museum collection‐based population genomic applications. Such technical advances greatly enhance the value of museum collections, even where a pre‐existing reference is lacking and points to a broad range of potential applications in evolutionary and conservation biology.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>24118668</pmid><doi>10.1111/mec.12516</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2013-12, Vol.22 (24), p.6018-6032 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4134471 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Animals bioinformatics Biological and medical sciences Biological evolution California case studies Climate Change DNA DNA Damage exon capture Exons Fundamental and applied biological sciences. Psychology Gene Frequency genetic variation Genetics of eukaryotes. Biological and molecular evolution Genetics, Population - methods Genomics - methods Genotype Mammalia metagenomics museum skins Museums natural history natural history museum collections nonmodel organisms Polymorphism, Single Nucleotide Population genetics, reproduction patterns researchers Sciuridae - genetics screening Sequence Analysis, DNA Tamias Tamias alpinus Transcriptome Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution |
title | Unlocking the vault: next‐generation museum population genomics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unlocking%20the%20vault:%20next%E2%80%90generation%20museum%20population%20genomics&rft.jtitle=Molecular%20ecology&rft.au=Bi,%20Ke&rft.date=2013-12&rft.volume=22&rft.issue=24&rft.spage=6018&rft.epage=6032&rft.pages=6018-6032&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.12516&rft_dat=%3Cproquest_pubme%3E3147099071%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465141766&rft_id=info:pmid/24118668&rfr_iscdi=true |