The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel

The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2014-08, Vol.289 (33), p.23029-23042
Hauptverfasser: Kota, Pradeep, Buchner, Ginka, Chakraborty, Hirak, Dang, Yan L., He, Hong, Garcia, Guilherme J.M., Kubelka, Jan, Gentzsch, Martina, Stutts, M. Jackson, Dokholyan, Nikolay V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23042
container_issue 33
container_start_page 23029
container_title The Journal of biological chemistry
container_volume 289
creator Kota, Pradeep
Buchner, Ginka
Chakraborty, Hirak
Dang, Yan L.
He, Hong
Garcia, Guilherme J.M.
Kubelka, Jan
Gentzsch, Martina
Stutts, M. Jackson
Dokholyan, Nikolay V.
description The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr370 in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.
doi_str_mv 10.1074/jbc.M114.570952
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582033101X</els_id><sourcerecordid>1555627880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-10dd3b37f6cd5d3190afdc7663423e57632814031ff1d49af25709b6d95c5c273</originalsourceid><addsrcrecordid>eNp1kc9vFCEUx4nR2G317M1w9DJbfgzDcDHZbGs1qZpoTbwRFt7s0jCwwswm_e9ls7XRg1xewvvygccHoTeULCmR7eX9xi4_U9ouhSRKsGdoQUnPGy7oz-doQQijjWKiP0PnpdyTulpFX6Iz1irJFW0XaHu3A_ylmSCPPpqAr9JofMSrEFKpm96aEB7wN9jOwUxQ8DqAOZgtYBMdXtnJH8zkU8RpwFMlXe99LcFX0vfk_Dzi9c7ECOEVejGYUOD1Y71APz5c360_Nrdfbz6tV7eN5ZJPDSXO8Q2XQ2edcJwqYgZnZdfxlnEQsuOspy3hdBioa5UZ2HHwTeeUsMIyyS_Q-xN3P29GcBbilE3Q--xHkx90Ml7_24l-p7fpoFta0YRVwLtHQE6_ZiiTHn2xEIKJkOaiqRCiY7LvSY1enqI2p1IyDE_XUKKPenTVo4969ElPPfH279c95f_4qAF1CkD9o4OHrIv1EC04n8FO2iX_X_hvpeCgEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555627880</pqid></control><display><type>article</type><title>The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kota, Pradeep ; Buchner, Ginka ; Chakraborty, Hirak ; Dang, Yan L. ; He, Hong ; Garcia, Guilherme J.M. ; Kubelka, Jan ; Gentzsch, Martina ; Stutts, M. Jackson ; Dokholyan, Nikolay V.</creator><creatorcontrib>Kota, Pradeep ; Buchner, Ginka ; Chakraborty, Hirak ; Dang, Yan L. ; He, Hong ; Garcia, Guilherme J.M. ; Kubelka, Jan ; Gentzsch, Martina ; Stutts, M. Jackson ; Dokholyan, Nikolay V.</creatorcontrib><description>The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr370 in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.570952</identifier><identifier>PMID: 24973914</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Allosteric Regulation - physiology ; Animals ; Epithelial Sodium Channels - chemistry ; Epithelial Sodium Channels - genetics ; Molecular Biophysics ; Molecular Dynamics Simulation ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteolysis ; Rats</subject><ispartof>The Journal of biological chemistry, 2014-08, Vol.289 (33), p.23029-23042</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-10dd3b37f6cd5d3190afdc7663423e57632814031ff1d49af25709b6d95c5c273</citedby><cites>FETCH-LOGICAL-c373t-10dd3b37f6cd5d3190afdc7663423e57632814031ff1d49af25709b6d95c5c273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132802/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132802/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24973914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kota, Pradeep</creatorcontrib><creatorcontrib>Buchner, Ginka</creatorcontrib><creatorcontrib>Chakraborty, Hirak</creatorcontrib><creatorcontrib>Dang, Yan L.</creatorcontrib><creatorcontrib>He, Hong</creatorcontrib><creatorcontrib>Garcia, Guilherme J.M.</creatorcontrib><creatorcontrib>Kubelka, Jan</creatorcontrib><creatorcontrib>Gentzsch, Martina</creatorcontrib><creatorcontrib>Stutts, M. Jackson</creatorcontrib><creatorcontrib>Dokholyan, Nikolay V.</creatorcontrib><title>The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr370 in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.</description><subject>Allosteric Regulation - physiology</subject><subject>Animals</subject><subject>Epithelial Sodium Channels - chemistry</subject><subject>Epithelial Sodium Channels - genetics</subject><subject>Molecular Biophysics</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteolysis</subject><subject>Rats</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9vFCEUx4nR2G317M1w9DJbfgzDcDHZbGs1qZpoTbwRFt7s0jCwwswm_e9ls7XRg1xewvvygccHoTeULCmR7eX9xi4_U9ouhSRKsGdoQUnPGy7oz-doQQijjWKiP0PnpdyTulpFX6Iz1irJFW0XaHu3A_ylmSCPPpqAr9JofMSrEFKpm96aEB7wN9jOwUxQ8DqAOZgtYBMdXtnJH8zkU8RpwFMlXe99LcFX0vfk_Dzi9c7ECOEVejGYUOD1Y71APz5c360_Nrdfbz6tV7eN5ZJPDSXO8Q2XQ2edcJwqYgZnZdfxlnEQsuOspy3hdBioa5UZ2HHwTeeUsMIyyS_Q-xN3P29GcBbilE3Q--xHkx90Ml7_24l-p7fpoFta0YRVwLtHQE6_ZiiTHn2xEIKJkOaiqRCiY7LvSY1enqI2p1IyDE_XUKKPenTVo4969ElPPfH279c95f_4qAF1CkD9o4OHrIv1EC04n8FO2iX_X_hvpeCgEA</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Kota, Pradeep</creator><creator>Buchner, Ginka</creator><creator>Chakraborty, Hirak</creator><creator>Dang, Yan L.</creator><creator>He, Hong</creator><creator>Garcia, Guilherme J.M.</creator><creator>Kubelka, Jan</creator><creator>Gentzsch, Martina</creator><creator>Stutts, M. Jackson</creator><creator>Dokholyan, Nikolay V.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140815</creationdate><title>The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel</title><author>Kota, Pradeep ; Buchner, Ginka ; Chakraborty, Hirak ; Dang, Yan L. ; He, Hong ; Garcia, Guilherme J.M. ; Kubelka, Jan ; Gentzsch, Martina ; Stutts, M. Jackson ; Dokholyan, Nikolay V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-10dd3b37f6cd5d3190afdc7663423e57632814031ff1d49af25709b6d95c5c273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Allosteric Regulation - physiology</topic><topic>Animals</topic><topic>Epithelial Sodium Channels - chemistry</topic><topic>Epithelial Sodium Channels - genetics</topic><topic>Molecular Biophysics</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteolysis</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kota, Pradeep</creatorcontrib><creatorcontrib>Buchner, Ginka</creatorcontrib><creatorcontrib>Chakraborty, Hirak</creatorcontrib><creatorcontrib>Dang, Yan L.</creatorcontrib><creatorcontrib>He, Hong</creatorcontrib><creatorcontrib>Garcia, Guilherme J.M.</creatorcontrib><creatorcontrib>Kubelka, Jan</creatorcontrib><creatorcontrib>Gentzsch, Martina</creatorcontrib><creatorcontrib>Stutts, M. Jackson</creatorcontrib><creatorcontrib>Dokholyan, Nikolay V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kota, Pradeep</au><au>Buchner, Ginka</au><au>Chakraborty, Hirak</au><au>Dang, Yan L.</au><au>He, Hong</au><au>Garcia, Guilherme J.M.</au><au>Kubelka, Jan</au><au>Gentzsch, Martina</au><au>Stutts, M. Jackson</au><au>Dokholyan, Nikolay V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-08-15</date><risdate>2014</risdate><volume>289</volume><issue>33</issue><spage>23029</spage><epage>23042</epage><pages>23029-23042</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr370 in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24973914</pmid><doi>10.1074/jbc.M114.570952</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2014-08, Vol.289 (33), p.23029-23042
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132802
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Allosteric Regulation - physiology
Animals
Epithelial Sodium Channels - chemistry
Epithelial Sodium Channels - genetics
Molecular Biophysics
Molecular Dynamics Simulation
Mutation
Protein Structure, Secondary
Protein Structure, Tertiary
Proteolysis
Rats
title The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20N-terminal%20Domain%20Allosterically%20Regulates%20Cleavage%20and%20Activation%20of%20the%20Epithelial%20Sodium%20Channel&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kota,%20Pradeep&rft.date=2014-08-15&rft.volume=289&rft.issue=33&rft.spage=23029&rft.epage=23042&rft.pages=23029-23042&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.570952&rft_dat=%3Cproquest_pubme%3E1555627880%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555627880&rft_id=info:pmid/24973914&rft_els_id=S002192582033101X&rfr_iscdi=true