The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel
The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2014-08, Vol.289 (33), p.23029-23042 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23042 |
---|---|
container_issue | 33 |
container_start_page | 23029 |
container_title | The Journal of biological chemistry |
container_volume | 289 |
creator | Kota, Pradeep Buchner, Ginka Chakraborty, Hirak Dang, Yan L. He, Hong Garcia, Guilherme J.M. Kubelka, Jan Gentzsch, Martina Stutts, M. Jackson Dokholyan, Nikolay V. |
description | The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr370 in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation. |
doi_str_mv | 10.1074/jbc.M114.570952 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192582033101X</els_id><sourcerecordid>1555627880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-10dd3b37f6cd5d3190afdc7663423e57632814031ff1d49af25709b6d95c5c273</originalsourceid><addsrcrecordid>eNp1kc9vFCEUx4nR2G317M1w9DJbfgzDcDHZbGs1qZpoTbwRFt7s0jCwwswm_e9ls7XRg1xewvvygccHoTeULCmR7eX9xi4_U9ouhSRKsGdoQUnPGy7oz-doQQijjWKiP0PnpdyTulpFX6Iz1irJFW0XaHu3A_ylmSCPPpqAr9JofMSrEFKpm96aEB7wN9jOwUxQ8DqAOZgtYBMdXtnJH8zkU8RpwFMlXe99LcFX0vfk_Dzi9c7ECOEVejGYUOD1Y71APz5c360_Nrdfbz6tV7eN5ZJPDSXO8Q2XQ2edcJwqYgZnZdfxlnEQsuOspy3hdBioa5UZ2HHwTeeUsMIyyS_Q-xN3P29GcBbilE3Q--xHkx90Ml7_24l-p7fpoFta0YRVwLtHQE6_ZiiTHn2xEIKJkOaiqRCiY7LvSY1enqI2p1IyDE_XUKKPenTVo4969ElPPfH279c95f_4qAF1CkD9o4OHrIv1EC04n8FO2iX_X_hvpeCgEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555627880</pqid></control><display><type>article</type><title>The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kota, Pradeep ; Buchner, Ginka ; Chakraborty, Hirak ; Dang, Yan L. ; He, Hong ; Garcia, Guilherme J.M. ; Kubelka, Jan ; Gentzsch, Martina ; Stutts, M. Jackson ; Dokholyan, Nikolay V.</creator><creatorcontrib>Kota, Pradeep ; Buchner, Ginka ; Chakraborty, Hirak ; Dang, Yan L. ; He, Hong ; Garcia, Guilherme J.M. ; Kubelka, Jan ; Gentzsch, Martina ; Stutts, M. Jackson ; Dokholyan, Nikolay V.</creatorcontrib><description>The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr370 in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.570952</identifier><identifier>PMID: 24973914</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Allosteric Regulation - physiology ; Animals ; Epithelial Sodium Channels - chemistry ; Epithelial Sodium Channels - genetics ; Molecular Biophysics ; Molecular Dynamics Simulation ; Mutation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteolysis ; Rats</subject><ispartof>The Journal of biological chemistry, 2014-08, Vol.289 (33), p.23029-23042</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-10dd3b37f6cd5d3190afdc7663423e57632814031ff1d49af25709b6d95c5c273</citedby><cites>FETCH-LOGICAL-c373t-10dd3b37f6cd5d3190afdc7663423e57632814031ff1d49af25709b6d95c5c273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132802/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132802/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24973914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kota, Pradeep</creatorcontrib><creatorcontrib>Buchner, Ginka</creatorcontrib><creatorcontrib>Chakraborty, Hirak</creatorcontrib><creatorcontrib>Dang, Yan L.</creatorcontrib><creatorcontrib>He, Hong</creatorcontrib><creatorcontrib>Garcia, Guilherme J.M.</creatorcontrib><creatorcontrib>Kubelka, Jan</creatorcontrib><creatorcontrib>Gentzsch, Martina</creatorcontrib><creatorcontrib>Stutts, M. Jackson</creatorcontrib><creatorcontrib>Dokholyan, Nikolay V.</creatorcontrib><title>The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr370 in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.</description><subject>Allosteric Regulation - physiology</subject><subject>Animals</subject><subject>Epithelial Sodium Channels - chemistry</subject><subject>Epithelial Sodium Channels - genetics</subject><subject>Molecular Biophysics</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteolysis</subject><subject>Rats</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9vFCEUx4nR2G317M1w9DJbfgzDcDHZbGs1qZpoTbwRFt7s0jCwwswm_e9ls7XRg1xewvvygccHoTeULCmR7eX9xi4_U9ouhSRKsGdoQUnPGy7oz-doQQijjWKiP0PnpdyTulpFX6Iz1irJFW0XaHu3A_ylmSCPPpqAr9JofMSrEFKpm96aEB7wN9jOwUxQ8DqAOZgtYBMdXtnJH8zkU8RpwFMlXe99LcFX0vfk_Dzi9c7ECOEVejGYUOD1Y71APz5c360_Nrdfbz6tV7eN5ZJPDSXO8Q2XQ2edcJwqYgZnZdfxlnEQsuOspy3hdBioa5UZ2HHwTeeUsMIyyS_Q-xN3P29GcBbilE3Q--xHkx90Ml7_24l-p7fpoFta0YRVwLtHQE6_ZiiTHn2xEIKJkOaiqRCiY7LvSY1enqI2p1IyDE_XUKKPenTVo4969ElPPfH279c95f_4qAF1CkD9o4OHrIv1EC04n8FO2iX_X_hvpeCgEA</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Kota, Pradeep</creator><creator>Buchner, Ginka</creator><creator>Chakraborty, Hirak</creator><creator>Dang, Yan L.</creator><creator>He, Hong</creator><creator>Garcia, Guilherme J.M.</creator><creator>Kubelka, Jan</creator><creator>Gentzsch, Martina</creator><creator>Stutts, M. Jackson</creator><creator>Dokholyan, Nikolay V.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140815</creationdate><title>The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel</title><author>Kota, Pradeep ; Buchner, Ginka ; Chakraborty, Hirak ; Dang, Yan L. ; He, Hong ; Garcia, Guilherme J.M. ; Kubelka, Jan ; Gentzsch, Martina ; Stutts, M. Jackson ; Dokholyan, Nikolay V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-10dd3b37f6cd5d3190afdc7663423e57632814031ff1d49af25709b6d95c5c273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Allosteric Regulation - physiology</topic><topic>Animals</topic><topic>Epithelial Sodium Channels - chemistry</topic><topic>Epithelial Sodium Channels - genetics</topic><topic>Molecular Biophysics</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteolysis</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kota, Pradeep</creatorcontrib><creatorcontrib>Buchner, Ginka</creatorcontrib><creatorcontrib>Chakraborty, Hirak</creatorcontrib><creatorcontrib>Dang, Yan L.</creatorcontrib><creatorcontrib>He, Hong</creatorcontrib><creatorcontrib>Garcia, Guilherme J.M.</creatorcontrib><creatorcontrib>Kubelka, Jan</creatorcontrib><creatorcontrib>Gentzsch, Martina</creatorcontrib><creatorcontrib>Stutts, M. Jackson</creatorcontrib><creatorcontrib>Dokholyan, Nikolay V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kota, Pradeep</au><au>Buchner, Ginka</au><au>Chakraborty, Hirak</au><au>Dang, Yan L.</au><au>He, Hong</au><au>Garcia, Guilherme J.M.</au><au>Kubelka, Jan</au><au>Gentzsch, Martina</au><au>Stutts, M. Jackson</au><au>Dokholyan, Nikolay V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-08-15</date><risdate>2014</risdate><volume>289</volume><issue>33</issue><spage>23029</spage><epage>23042</epage><pages>23029-23042</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr370 in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24973914</pmid><doi>10.1074/jbc.M114.570952</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2014-08, Vol.289 (33), p.23029-23042 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132802 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Allosteric Regulation - physiology Animals Epithelial Sodium Channels - chemistry Epithelial Sodium Channels - genetics Molecular Biophysics Molecular Dynamics Simulation Mutation Protein Structure, Secondary Protein Structure, Tertiary Proteolysis Rats |
title | The N-terminal Domain Allosterically Regulates Cleavage and Activation of the Epithelial Sodium Channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A41%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20N-terminal%20Domain%20Allosterically%20Regulates%20Cleavage%20and%20Activation%20of%20the%20Epithelial%20Sodium%20Channel&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kota,%20Pradeep&rft.date=2014-08-15&rft.volume=289&rft.issue=33&rft.spage=23029&rft.epage=23042&rft.pages=23029-23042&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.570952&rft_dat=%3Cproquest_pubme%3E1555627880%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555627880&rft_id=info:pmid/24973914&rft_els_id=S002192582033101X&rfr_iscdi=true |