Mechanistic Study of Uba5 Enzyme and the Ufm1 Conjugation Pathway
E1 enzymes activate ubiquitin or ubiquitin-like proteins (Ubl) via an adenylate intermediate and initiate the enzymatic cascade of Ubl conjugation to target proteins or lipids. Ubiquitin-fold modifier 1 (Ufm1) is activated by the E1 enzyme Uba5, and this pathway is proposed to play an important role...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2014-08, Vol.289 (33), p.22648-22658 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22658 |
---|---|
container_issue | 33 |
container_start_page | 22648 |
container_title | The Journal of biological chemistry |
container_volume | 289 |
creator | Gavin, James M. Hoar, Kara Xu, Qing Ma, Jingya Lin, Yafang Chen, Jiejin Chen, Wei Bruzzese, Frank J. Harrison, Sean Mallender, William D. Bump, Nancy J. Sintchak, Michael D. Bence, Neil F. Li, Ping Dick, Lawrence R. Gould, Alexandra E. Chen, Jesse J. |
description | E1 enzymes activate ubiquitin or ubiquitin-like proteins (Ubl) via an adenylate intermediate and initiate the enzymatic cascade of Ubl conjugation to target proteins or lipids. Ubiquitin-fold modifier 1 (Ufm1) is activated by the E1 enzyme Uba5, and this pathway is proposed to play an important role in the endoplasmic reticulum (ER) stress response. However, the mechanisms of Ufm1 activation by Uba5 and subsequent transfer to the conjugating enzyme (E2), Ufc1, have not been studied in detail. In this work, we found that Uba5 activated Ufm1 via a two-step mechanism and formed a binary covalent complex of Uba5∼Ufm1 thioester. This feature contrasts with the three-step mechanism and ternary complex formation in ubiquitin-activating enzyme Uba1. Uba5 displayed random ordered binding with Ufm1 and ATP, and its ATP-pyrophosphate (PPi) exchange activity was inhibited by both AMP and PPi. Ufm1 activation and Uba5∼Ufm1 thioester formation were stimulated in the presence of Ufc1. Furthermore, binding of ATP to Uba5∼Ufm1 thioester was required for efficient transfer of Ufm1 from Uba5 to Ufc1 via transthiolation. Consistent with the two-step activation mechanism, the mechanism-based pan-E1 inhibitor, adenosine 5′-sulfamate (ADS), reacted with the Uba5∼Ufm1 thioester and formed a covalent, tight-binding Ufm1-ADS adduct in the active site of Uba5, which prevented further substrate binding or catalysis. ADS was also shown to inhibit the Uba5 conjugation pathway in the HCT116 cells through formation of the Ufm1-ADS adduct. This suggests that further development of more selective Uba5 inhibitors could be useful in interrogating the roles of the Uba5 pathway in cells. |
doi_str_mv | 10.1074/jbc.M114.573972 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820330714</els_id><sourcerecordid>1555627886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-606436fb707650c2bb0cdb7c408c4e66d300a0c399a6fe8a8ad77f7e7aa2cc83</originalsourceid><addsrcrecordid>eNp1kE1P3DAQhi0Egi1w7q3ykUsWf8R2ckFCK0orgYoESNysiTNhvdrYEDug7a8naClqD53LHOaZd0YPIV85m3NmytNV4-bXnJdzZWRtxA6ZcVbJQir-sEtmjAle1EJVB-RLSis2VVnzfXIgylprKeWMnF-jW0LwKXtHb_PYbmjs6H0Dil6E35seKYSW5iXS-67ndBHDanyE7GOgN5CXr7A5InsdrBMef_RDcvf94m7xo7j6dflzcX5VOMXqXGimS6m7xjCjFXOiaZhrG-NKVrkStW4lY8CcrGvQHVZQQWtMZ9AACOcqeUjOtrFPY9Nj6zDkAdb2afA9DBsbwdt_J8Ev7WN8sSWXwhgxBZx8BAzxecSUbe-Tw_UaAsYxWa6U0sJUlZ7Q0y3qhpjSgN3nGc7su3c7ebfv3u3W-7Tx7e_vPvk_oieg3gI4KXrxONjkPAaHrR_QZdtG_9_wNxiEkj4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1555627886</pqid></control><display><type>article</type><title>Mechanistic Study of Uba5 Enzyme and the Ufm1 Conjugation Pathway</title><source>MEDLINE</source><source>PMC (PubMed Central)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Gavin, James M. ; Hoar, Kara ; Xu, Qing ; Ma, Jingya ; Lin, Yafang ; Chen, Jiejin ; Chen, Wei ; Bruzzese, Frank J. ; Harrison, Sean ; Mallender, William D. ; Bump, Nancy J. ; Sintchak, Michael D. ; Bence, Neil F. ; Li, Ping ; Dick, Lawrence R. ; Gould, Alexandra E. ; Chen, Jesse J.</creator><creatorcontrib>Gavin, James M. ; Hoar, Kara ; Xu, Qing ; Ma, Jingya ; Lin, Yafang ; Chen, Jiejin ; Chen, Wei ; Bruzzese, Frank J. ; Harrison, Sean ; Mallender, William D. ; Bump, Nancy J. ; Sintchak, Michael D. ; Bence, Neil F. ; Li, Ping ; Dick, Lawrence R. ; Gould, Alexandra E. ; Chen, Jesse J.</creatorcontrib><description>E1 enzymes activate ubiquitin or ubiquitin-like proteins (Ubl) via an adenylate intermediate and initiate the enzymatic cascade of Ubl conjugation to target proteins or lipids. Ubiquitin-fold modifier 1 (Ufm1) is activated by the E1 enzyme Uba5, and this pathway is proposed to play an important role in the endoplasmic reticulum (ER) stress response. However, the mechanisms of Ufm1 activation by Uba5 and subsequent transfer to the conjugating enzyme (E2), Ufc1, have not been studied in detail. In this work, we found that Uba5 activated Ufm1 via a two-step mechanism and formed a binary covalent complex of Uba5∼Ufm1 thioester. This feature contrasts with the three-step mechanism and ternary complex formation in ubiquitin-activating enzyme Uba1. Uba5 displayed random ordered binding with Ufm1 and ATP, and its ATP-pyrophosphate (PPi) exchange activity was inhibited by both AMP and PPi. Ufm1 activation and Uba5∼Ufm1 thioester formation were stimulated in the presence of Ufc1. Furthermore, binding of ATP to Uba5∼Ufm1 thioester was required for efficient transfer of Ufm1 from Uba5 to Ufc1 via transthiolation. Consistent with the two-step activation mechanism, the mechanism-based pan-E1 inhibitor, adenosine 5′-sulfamate (ADS), reacted with the Uba5∼Ufm1 thioester and formed a covalent, tight-binding Ufm1-ADS adduct in the active site of Uba5, which prevented further substrate binding or catalysis. ADS was also shown to inhibit the Uba5 conjugation pathway in the HCT116 cells through formation of the Ufm1-ADS adduct. This suggests that further development of more selective Uba5 inhibitors could be useful in interrogating the roles of the Uba5 pathway in cells.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M114.573972</identifier><identifier>PMID: 24966333</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate - chemistry ; Adenosine Triphosphate - genetics ; Adenosine Triphosphate - metabolism ; Catalytic Domain ; Cell Line ; Enzyme Activation ; Enzymology ; Humans ; Models, Chemical ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Protein Binding ; Protein Structure, Quaternary ; Proteins - chemistry ; Proteins - genetics ; Proteins - metabolism ; Ubiquitin-Activating Enzymes - chemistry ; Ubiquitin-Activating Enzymes - genetics ; Ubiquitin-Activating Enzymes - metabolism ; Ubiquitin-Conjugating Enzymes - chemistry ; Ubiquitin-Conjugating Enzymes - genetics ; Ubiquitin-Conjugating Enzymes - metabolism</subject><ispartof>The Journal of biological chemistry, 2014-08, Vol.289 (33), p.22648-22658</ispartof><rights>2014 © 2014 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><rights>2014 by The American Society for Biochemistry and Molecular Biology, Inc. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-606436fb707650c2bb0cdb7c408c4e66d300a0c399a6fe8a8ad77f7e7aa2cc83</citedby><cites>FETCH-LOGICAL-c509t-606436fb707650c2bb0cdb7c408c4e66d300a0c399a6fe8a8ad77f7e7aa2cc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132772/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132772/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24966333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gavin, James M.</creatorcontrib><creatorcontrib>Hoar, Kara</creatorcontrib><creatorcontrib>Xu, Qing</creatorcontrib><creatorcontrib>Ma, Jingya</creatorcontrib><creatorcontrib>Lin, Yafang</creatorcontrib><creatorcontrib>Chen, Jiejin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Bruzzese, Frank J.</creatorcontrib><creatorcontrib>Harrison, Sean</creatorcontrib><creatorcontrib>Mallender, William D.</creatorcontrib><creatorcontrib>Bump, Nancy J.</creatorcontrib><creatorcontrib>Sintchak, Michael D.</creatorcontrib><creatorcontrib>Bence, Neil F.</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Dick, Lawrence R.</creatorcontrib><creatorcontrib>Gould, Alexandra E.</creatorcontrib><creatorcontrib>Chen, Jesse J.</creatorcontrib><title>Mechanistic Study of Uba5 Enzyme and the Ufm1 Conjugation Pathway</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>E1 enzymes activate ubiquitin or ubiquitin-like proteins (Ubl) via an adenylate intermediate and initiate the enzymatic cascade of Ubl conjugation to target proteins or lipids. Ubiquitin-fold modifier 1 (Ufm1) is activated by the E1 enzyme Uba5, and this pathway is proposed to play an important role in the endoplasmic reticulum (ER) stress response. However, the mechanisms of Ufm1 activation by Uba5 and subsequent transfer to the conjugating enzyme (E2), Ufc1, have not been studied in detail. In this work, we found that Uba5 activated Ufm1 via a two-step mechanism and formed a binary covalent complex of Uba5∼Ufm1 thioester. This feature contrasts with the three-step mechanism and ternary complex formation in ubiquitin-activating enzyme Uba1. Uba5 displayed random ordered binding with Ufm1 and ATP, and its ATP-pyrophosphate (PPi) exchange activity was inhibited by both AMP and PPi. Ufm1 activation and Uba5∼Ufm1 thioester formation were stimulated in the presence of Ufc1. Furthermore, binding of ATP to Uba5∼Ufm1 thioester was required for efficient transfer of Ufm1 from Uba5 to Ufc1 via transthiolation. Consistent with the two-step activation mechanism, the mechanism-based pan-E1 inhibitor, adenosine 5′-sulfamate (ADS), reacted with the Uba5∼Ufm1 thioester and formed a covalent, tight-binding Ufm1-ADS adduct in the active site of Uba5, which prevented further substrate binding or catalysis. ADS was also shown to inhibit the Uba5 conjugation pathway in the HCT116 cells through formation of the Ufm1-ADS adduct. This suggests that further development of more selective Uba5 inhibitors could be useful in interrogating the roles of the Uba5 pathway in cells.</description><subject>Adenosine Triphosphate - chemistry</subject><subject>Adenosine Triphosphate - genetics</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Catalytic Domain</subject><subject>Cell Line</subject><subject>Enzyme Activation</subject><subject>Enzymology</subject><subject>Humans</subject><subject>Models, Chemical</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Protein Binding</subject><subject>Protein Structure, Quaternary</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Ubiquitin-Activating Enzymes - chemistry</subject><subject>Ubiquitin-Activating Enzymes - genetics</subject><subject>Ubiquitin-Activating Enzymes - metabolism</subject><subject>Ubiquitin-Conjugating Enzymes - chemistry</subject><subject>Ubiquitin-Conjugating Enzymes - genetics</subject><subject>Ubiquitin-Conjugating Enzymes - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1P3DAQhi0Egi1w7q3ykUsWf8R2ckFCK0orgYoESNysiTNhvdrYEDug7a8naClqD53LHOaZd0YPIV85m3NmytNV4-bXnJdzZWRtxA6ZcVbJQir-sEtmjAle1EJVB-RLSis2VVnzfXIgylprKeWMnF-jW0LwKXtHb_PYbmjs6H0Dil6E35seKYSW5iXS-67ndBHDanyE7GOgN5CXr7A5InsdrBMef_RDcvf94m7xo7j6dflzcX5VOMXqXGimS6m7xjCjFXOiaZhrG-NKVrkStW4lY8CcrGvQHVZQQWtMZ9AACOcqeUjOtrFPY9Nj6zDkAdb2afA9DBsbwdt_J8Ev7WN8sSWXwhgxBZx8BAzxecSUbe-Tw_UaAsYxWa6U0sJUlZ7Q0y3qhpjSgN3nGc7su3c7ebfv3u3W-7Tx7e_vPvk_oieg3gI4KXrxONjkPAaHrR_QZdtG_9_wNxiEkj4</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Gavin, James M.</creator><creator>Hoar, Kara</creator><creator>Xu, Qing</creator><creator>Ma, Jingya</creator><creator>Lin, Yafang</creator><creator>Chen, Jiejin</creator><creator>Chen, Wei</creator><creator>Bruzzese, Frank J.</creator><creator>Harrison, Sean</creator><creator>Mallender, William D.</creator><creator>Bump, Nancy J.</creator><creator>Sintchak, Michael D.</creator><creator>Bence, Neil F.</creator><creator>Li, Ping</creator><creator>Dick, Lawrence R.</creator><creator>Gould, Alexandra E.</creator><creator>Chen, Jesse J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140815</creationdate><title>Mechanistic Study of Uba5 Enzyme and the Ufm1 Conjugation Pathway</title><author>Gavin, James M. ; Hoar, Kara ; Xu, Qing ; Ma, Jingya ; Lin, Yafang ; Chen, Jiejin ; Chen, Wei ; Bruzzese, Frank J. ; Harrison, Sean ; Mallender, William D. ; Bump, Nancy J. ; Sintchak, Michael D. ; Bence, Neil F. ; Li, Ping ; Dick, Lawrence R. ; Gould, Alexandra E. ; Chen, Jesse J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-606436fb707650c2bb0cdb7c408c4e66d300a0c399a6fe8a8ad77f7e7aa2cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adenosine Triphosphate - chemistry</topic><topic>Adenosine Triphosphate - genetics</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Catalytic Domain</topic><topic>Cell Line</topic><topic>Enzyme Activation</topic><topic>Enzymology</topic><topic>Humans</topic><topic>Models, Chemical</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Protein Binding</topic><topic>Protein Structure, Quaternary</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Ubiquitin-Activating Enzymes - chemistry</topic><topic>Ubiquitin-Activating Enzymes - genetics</topic><topic>Ubiquitin-Activating Enzymes - metabolism</topic><topic>Ubiquitin-Conjugating Enzymes - chemistry</topic><topic>Ubiquitin-Conjugating Enzymes - genetics</topic><topic>Ubiquitin-Conjugating Enzymes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavin, James M.</creatorcontrib><creatorcontrib>Hoar, Kara</creatorcontrib><creatorcontrib>Xu, Qing</creatorcontrib><creatorcontrib>Ma, Jingya</creatorcontrib><creatorcontrib>Lin, Yafang</creatorcontrib><creatorcontrib>Chen, Jiejin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Bruzzese, Frank J.</creatorcontrib><creatorcontrib>Harrison, Sean</creatorcontrib><creatorcontrib>Mallender, William D.</creatorcontrib><creatorcontrib>Bump, Nancy J.</creatorcontrib><creatorcontrib>Sintchak, Michael D.</creatorcontrib><creatorcontrib>Bence, Neil F.</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Dick, Lawrence R.</creatorcontrib><creatorcontrib>Gould, Alexandra E.</creatorcontrib><creatorcontrib>Chen, Jesse J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavin, James M.</au><au>Hoar, Kara</au><au>Xu, Qing</au><au>Ma, Jingya</au><au>Lin, Yafang</au><au>Chen, Jiejin</au><au>Chen, Wei</au><au>Bruzzese, Frank J.</au><au>Harrison, Sean</au><au>Mallender, William D.</au><au>Bump, Nancy J.</au><au>Sintchak, Michael D.</au><au>Bence, Neil F.</au><au>Li, Ping</au><au>Dick, Lawrence R.</au><au>Gould, Alexandra E.</au><au>Chen, Jesse J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Study of Uba5 Enzyme and the Ufm1 Conjugation Pathway</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2014-08-15</date><risdate>2014</risdate><volume>289</volume><issue>33</issue><spage>22648</spage><epage>22658</epage><pages>22648-22658</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>E1 enzymes activate ubiquitin or ubiquitin-like proteins (Ubl) via an adenylate intermediate and initiate the enzymatic cascade of Ubl conjugation to target proteins or lipids. Ubiquitin-fold modifier 1 (Ufm1) is activated by the E1 enzyme Uba5, and this pathway is proposed to play an important role in the endoplasmic reticulum (ER) stress response. However, the mechanisms of Ufm1 activation by Uba5 and subsequent transfer to the conjugating enzyme (E2), Ufc1, have not been studied in detail. In this work, we found that Uba5 activated Ufm1 via a two-step mechanism and formed a binary covalent complex of Uba5∼Ufm1 thioester. This feature contrasts with the three-step mechanism and ternary complex formation in ubiquitin-activating enzyme Uba1. Uba5 displayed random ordered binding with Ufm1 and ATP, and its ATP-pyrophosphate (PPi) exchange activity was inhibited by both AMP and PPi. Ufm1 activation and Uba5∼Ufm1 thioester formation were stimulated in the presence of Ufc1. Furthermore, binding of ATP to Uba5∼Ufm1 thioester was required for efficient transfer of Ufm1 from Uba5 to Ufc1 via transthiolation. Consistent with the two-step activation mechanism, the mechanism-based pan-E1 inhibitor, adenosine 5′-sulfamate (ADS), reacted with the Uba5∼Ufm1 thioester and formed a covalent, tight-binding Ufm1-ADS adduct in the active site of Uba5, which prevented further substrate binding or catalysis. ADS was also shown to inhibit the Uba5 conjugation pathway in the HCT116 cells through formation of the Ufm1-ADS adduct. This suggests that further development of more selective Uba5 inhibitors could be useful in interrogating the roles of the Uba5 pathway in cells.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24966333</pmid><doi>10.1074/jbc.M114.573972</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2014-08, Vol.289 (33), p.22648-22658 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132772 |
source | MEDLINE; PMC (PubMed Central); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adenosine Triphosphate - chemistry Adenosine Triphosphate - genetics Adenosine Triphosphate - metabolism Catalytic Domain Cell Line Enzyme Activation Enzymology Humans Models, Chemical Multiprotein Complexes - chemistry Multiprotein Complexes - genetics Multiprotein Complexes - metabolism Protein Binding Protein Structure, Quaternary Proteins - chemistry Proteins - genetics Proteins - metabolism Ubiquitin-Activating Enzymes - chemistry Ubiquitin-Activating Enzymes - genetics Ubiquitin-Activating Enzymes - metabolism Ubiquitin-Conjugating Enzymes - chemistry Ubiquitin-Conjugating Enzymes - genetics Ubiquitin-Conjugating Enzymes - metabolism |
title | Mechanistic Study of Uba5 Enzyme and the Ufm1 Conjugation Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Study%20of%20Uba5%20Enzyme%20and%20the%20Ufm1%20Conjugation%20Pathway&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Gavin,%20James%20M.&rft.date=2014-08-15&rft.volume=289&rft.issue=33&rft.spage=22648&rft.epage=22658&rft.pages=22648-22658&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M114.573972&rft_dat=%3Cproquest_pubme%3E1555627886%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1555627886&rft_id=info:pmid/24966333&rft_els_id=S0021925820330714&rfr_iscdi=true |