Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons

Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2014-08, Vol.42 (14), p.9195-9208
Hauptverfasser: Goldie, Belinda J, Dun, Matthew D, Lin, Minjie, Smith, Nathan D, Verrills, Nicole M, Dayas, Christopher V, Cairns, Murray J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9208
container_issue 14
container_start_page 9195
container_title Nucleic acids research
container_volume 42
creator Goldie, Belinda J
Dun, Matthew D
Lin, Minjie
Smith, Nathan D
Verrills, Nicole M
Dayas, Christopher V
Cairns, Murray J
description Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity component for universal-sequence-dependent RNA binding complexes. We investigated the subcellular distribution of these molecules in resting and potassium chloride depolarized human neuroblasts, and found both selective enrichment and depletion in neurites. Depolarization was associated with a neurite-restricted decrease in miRNA expression; a subset of these molecules was recovered from the depolarization medium in nuclease resistant extracellular exosomes. These vesicles were enriched with primate specific miRNA and the synaptic-plasticity-associated protein MAP1b. These findings further support a role for miRNA as neural plasticity regulators, as they are compartmentalized in neurons and undergo activity-associated redistribution or release into the extracellular matrix.
doi_str_mv 10.1093/nar/gku594
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25053844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-d5dc3db28bf447d46f157ed179f4626190cd71c45b562b52bd42faad1d7013d63</originalsourceid><addsrcrecordid>eNpVkNtKw0AQhhdRbK3e-ACSayF2D7NJcyOU4gmqguj1stlDuzbJht20WJ_eSLXo1cA3__wDH0LnBF8RXLBxI8N4sVrzAg7QkLCMplBk9BANMcM8JRgmA3QS4zvGBAiHYzSgHHM2ARgiNVWd27hum8oYvXKyMzqp3cvTNJHBJK1UK7nokWuSR9mSMjVNcGrZE_Pho69NTIKpjIw9scHXiTatr2Rwnz1ozDr4Jp6iIyuraM5-5gi93d68zu7T-fPdw2w6TxUAdKnmWjFd0klpAXINmSU8N5rkhYWMZqTASudEAS95RktOSw3USqmJzjFhOmMjdL3rbddlbbQyTRdkJdrgahm2wksn_m8atxQLvxFAGM0p7gsudwUq-BiDsftbgsW3atGrFjvVffji77d99Nct-wIQxn38</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Goldie, Belinda J ; Dun, Matthew D ; Lin, Minjie ; Smith, Nathan D ; Verrills, Nicole M ; Dayas, Christopher V ; Cairns, Murray J</creator><creatorcontrib>Goldie, Belinda J ; Dun, Matthew D ; Lin, Minjie ; Smith, Nathan D ; Verrills, Nicole M ; Dayas, Christopher V ; Cairns, Murray J</creatorcontrib><description>Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity component for universal-sequence-dependent RNA binding complexes. We investigated the subcellular distribution of these molecules in resting and potassium chloride depolarized human neuroblasts, and found both selective enrichment and depletion in neurites. Depolarization was associated with a neurite-restricted decrease in miRNA expression; a subset of these molecules was recovered from the depolarization medium in nuclease resistant extracellular exosomes. These vesicles were enriched with primate specific miRNA and the synaptic-plasticity-associated protein MAP1b. These findings further support a role for miRNA as neural plasticity regulators, as they are compartmentalized in neurons and undergo activity-associated redistribution or release into the extracellular matrix.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gku594</identifier><identifier>PMID: 25053844</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Cell Line, Tumor ; Down-Regulation ; Exosomes - chemistry ; Exosomes - metabolism ; Humans ; MicroRNAs - analysis ; MicroRNAs - metabolism ; Microtubule-Associated Proteins - analysis ; Molecular Biology ; Nerve Tissue Proteins - analysis ; Neurites - chemistry ; Neurites - metabolism ; Neurons - metabolism ; Neurons - physiology ; Protein Biosynthesis ; Proteome - chemistry ; RNA, Messenger - metabolism ; Signal Transduction ; Transcription, Genetic</subject><ispartof>Nucleic acids research, 2014-08, Vol.42 (14), p.9195-9208</ispartof><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><rights>The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-d5dc3db28bf447d46f157ed179f4626190cd71c45b562b52bd42faad1d7013d63</citedby><cites>FETCH-LOGICAL-c444t-d5dc3db28bf447d46f157ed179f4626190cd71c45b562b52bd42faad1d7013d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132720/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132720/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25053844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldie, Belinda J</creatorcontrib><creatorcontrib>Dun, Matthew D</creatorcontrib><creatorcontrib>Lin, Minjie</creatorcontrib><creatorcontrib>Smith, Nathan D</creatorcontrib><creatorcontrib>Verrills, Nicole M</creatorcontrib><creatorcontrib>Dayas, Christopher V</creatorcontrib><creatorcontrib>Cairns, Murray J</creatorcontrib><title>Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity component for universal-sequence-dependent RNA binding complexes. We investigated the subcellular distribution of these molecules in resting and potassium chloride depolarized human neuroblasts, and found both selective enrichment and depletion in neurites. Depolarization was associated with a neurite-restricted decrease in miRNA expression; a subset of these molecules was recovered from the depolarization medium in nuclease resistant extracellular exosomes. These vesicles were enriched with primate specific miRNA and the synaptic-plasticity-associated protein MAP1b. These findings further support a role for miRNA as neural plasticity regulators, as they are compartmentalized in neurons and undergo activity-associated redistribution or release into the extracellular matrix.</description><subject>Cell Line, Tumor</subject><subject>Down-Regulation</subject><subject>Exosomes - chemistry</subject><subject>Exosomes - metabolism</subject><subject>Humans</subject><subject>MicroRNAs - analysis</subject><subject>MicroRNAs - metabolism</subject><subject>Microtubule-Associated Proteins - analysis</subject><subject>Molecular Biology</subject><subject>Nerve Tissue Proteins - analysis</subject><subject>Neurites - chemistry</subject><subject>Neurites - metabolism</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>Protein Biosynthesis</subject><subject>Proteome - chemistry</subject><subject>RNA, Messenger - metabolism</subject><subject>Signal Transduction</subject><subject>Transcription, Genetic</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkNtKw0AQhhdRbK3e-ACSayF2D7NJcyOU4gmqguj1stlDuzbJht20WJ_eSLXo1cA3__wDH0LnBF8RXLBxI8N4sVrzAg7QkLCMplBk9BANMcM8JRgmA3QS4zvGBAiHYzSgHHM2ARgiNVWd27hum8oYvXKyMzqp3cvTNJHBJK1UK7nokWuSR9mSMjVNcGrZE_Pho69NTIKpjIw9scHXiTatr2Rwnz1ozDr4Jp6iIyuraM5-5gi93d68zu7T-fPdw2w6TxUAdKnmWjFd0klpAXINmSU8N5rkhYWMZqTASudEAS95RktOSw3USqmJzjFhOmMjdL3rbddlbbQyTRdkJdrgahm2wksn_m8atxQLvxFAGM0p7gsudwUq-BiDsftbgsW3atGrFjvVffji77d99Nct-wIQxn38</recordid><startdate>20140818</startdate><enddate>20140818</enddate><creator>Goldie, Belinda J</creator><creator>Dun, Matthew D</creator><creator>Lin, Minjie</creator><creator>Smith, Nathan D</creator><creator>Verrills, Nicole M</creator><creator>Dayas, Christopher V</creator><creator>Cairns, Murray J</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140818</creationdate><title>Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons</title><author>Goldie, Belinda J ; Dun, Matthew D ; Lin, Minjie ; Smith, Nathan D ; Verrills, Nicole M ; Dayas, Christopher V ; Cairns, Murray J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-d5dc3db28bf447d46f157ed179f4626190cd71c45b562b52bd42faad1d7013d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cell Line, Tumor</topic><topic>Down-Regulation</topic><topic>Exosomes - chemistry</topic><topic>Exosomes - metabolism</topic><topic>Humans</topic><topic>MicroRNAs - analysis</topic><topic>MicroRNAs - metabolism</topic><topic>Microtubule-Associated Proteins - analysis</topic><topic>Molecular Biology</topic><topic>Nerve Tissue Proteins - analysis</topic><topic>Neurites - chemistry</topic><topic>Neurites - metabolism</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>Protein Biosynthesis</topic><topic>Proteome - chemistry</topic><topic>RNA, Messenger - metabolism</topic><topic>Signal Transduction</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldie, Belinda J</creatorcontrib><creatorcontrib>Dun, Matthew D</creatorcontrib><creatorcontrib>Lin, Minjie</creatorcontrib><creatorcontrib>Smith, Nathan D</creatorcontrib><creatorcontrib>Verrills, Nicole M</creatorcontrib><creatorcontrib>Dayas, Christopher V</creatorcontrib><creatorcontrib>Cairns, Murray J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldie, Belinda J</au><au>Dun, Matthew D</au><au>Lin, Minjie</au><au>Smith, Nathan D</au><au>Verrills, Nicole M</au><au>Dayas, Christopher V</au><au>Cairns, Murray J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2014-08-18</date><risdate>2014</risdate><volume>42</volume><issue>14</issue><spage>9195</spage><epage>9208</epage><pages>9195-9208</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Rapid input-restricted change in gene expression is an important aspect of synaptic plasticity requiring complex mechanisms of post-transcriptional mRNA trafficking and regulation. Small non-coding miRNA are uniquely poised to support these functions by providing a nucleic-acid-based specificity component for universal-sequence-dependent RNA binding complexes. We investigated the subcellular distribution of these molecules in resting and potassium chloride depolarized human neuroblasts, and found both selective enrichment and depletion in neurites. Depolarization was associated with a neurite-restricted decrease in miRNA expression; a subset of these molecules was recovered from the depolarization medium in nuclease resistant extracellular exosomes. These vesicles were enriched with primate specific miRNA and the synaptic-plasticity-associated protein MAP1b. These findings further support a role for miRNA as neural plasticity regulators, as they are compartmentalized in neurons and undergo activity-associated redistribution or release into the extracellular matrix.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>25053844</pmid><doi>10.1093/nar/gku594</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2014-08, Vol.42 (14), p.9195-9208
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132720
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Cell Line, Tumor
Down-Regulation
Exosomes - chemistry
Exosomes - metabolism
Humans
MicroRNAs - analysis
MicroRNAs - metabolism
Microtubule-Associated Proteins - analysis
Molecular Biology
Nerve Tissue Proteins - analysis
Neurites - chemistry
Neurites - metabolism
Neurons - metabolism
Neurons - physiology
Protein Biosynthesis
Proteome - chemistry
RNA, Messenger - metabolism
Signal Transduction
Transcription, Genetic
title Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activity-associated%20miRNA%20are%20packaged%20in%20Map1b-enriched%20exosomes%20released%20from%20depolarized%20neurons&rft.jtitle=Nucleic%20acids%20research&rft.au=Goldie,%20Belinda%20J&rft.date=2014-08-18&rft.volume=42&rft.issue=14&rft.spage=9195&rft.epage=9208&rft.pages=9195-9208&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gku594&rft_dat=%3Cpubmed_cross%3E25053844%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25053844&rfr_iscdi=true