The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding
The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feedi...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2013-09, Vol.341 (6153), p.1517-1521 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1521 |
---|---|
container_issue | 6153 |
container_start_page | 1517 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 341 |
creator | Jennings, Joshua H. Rizzi, Giorgio Stamatakis, Alice M. Ung, Randall L. Stuber, Garret D. |
description | The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding. |
doi_str_mv | 10.1126/science.1241812 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4131546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42619417</jstor_id><sourcerecordid>42619417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-62d3db50a6df6e06690528e8a48c45268169581c5a89400b14fe3c0e8b8eed863</originalsourceid><addsrcrecordid>eNqN0s1v0zAUAHALMbEyOHMCRUJIXLI9f8a5IE0VY5Mq7VLOluO8LK7SpNgJUv97XBoK7LKdfHg_P_t9EPKOwiWlTF1F57F3eEmZoJqyF2RBoZR5yYC_JAsArnINhTwnr2PcAKRYyV-RcyagYCVjC7Jet5jd9a2v_DiEfbb0wU1-zK6Da_2IbpwCZkOTjYmt7IjBdtntfjeMre3sdorZfYIYx5BiMbtBrH3_8IacNbaL-HY-L8j3m6_r5W2-uv92t7xe5U6BHHPFal5XEqyqG4WgVAmSadRWaCckU5qqUmrqpNWlAKioaJA7QF3p9I5W_IJ8OebdTdUWa4d9-kdndsFvbdibwXrzf6T3rXkYfhpBOZXikODznCAMP6ZUhtn66LDrbI_DFA3VoEFSzZ9BpVJaCp06_yQVvJA6DeNAPz6im2EKfWrab0WlZJIldXVULgwxBmxOJVIwhz0w8x6YeQ_SjQ__dubk_ww-gU8zsNHZrgm2dz7-dUVZpKd5cu-PbhPTfpzigilaClrwX9n6xUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437155252</pqid></control><display><type>article</type><title>The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Jennings, Joshua H. ; Rizzi, Giorgio ; Stamatakis, Alice M. ; Ung, Randall L. ; Stuber, Garret D.</creator><creatorcontrib>Jennings, Joshua H. ; Rizzi, Giorgio ; Stamatakis, Alice M. ; Ung, Randall L. ; Stuber, Garret D.</creatorcontrib><description>The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1241812</identifier><identifier>PMID: 24072922</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Adaptation, Physiological ; Amygdala - physiology ; Animals ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Behavioral neuroscience ; Biological and medical sciences ; Brain ; Channelrhodopsins ; Circuits ; Eating - physiology ; Eating disorders ; Energy consumption ; Epidemics ; Feeding ; Feeding Behavior - physiology ; Figs ; Food ; Food intake ; Foods ; Fundamental and applied biological sciences. Psychology ; GABAergic Neurons - physiology ; gamma-Aminobutyric Acid - metabolism ; gamma-Aminobutyric Acid - physiology ; Hypothalamus ; Hypothalamus - physiology ; Innervation ; Joints ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Male ; Medical sciences ; Metabolic diseases ; Mice ; Mice, Mutant Strains ; Neural conduction ; Neurons ; Obesity ; Obesity - physiopathology ; Photoinhibition ; Rabies virus ; Septal Nuclei - physiology ; Synapses - physiology ; Vertebrates: nervous system and sense organs</subject><ispartof>Science (American Association for the Advancement of Science), 2013-09, Vol.341 (6153), p.1517-1521</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-62d3db50a6df6e06690528e8a48c45268169581c5a89400b14fe3c0e8b8eed863</citedby><cites>FETCH-LOGICAL-c605t-62d3db50a6df6e06690528e8a48c45268169581c5a89400b14fe3c0e8b8eed863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42619417$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42619417$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27975253$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24072922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jennings, Joshua H.</creatorcontrib><creatorcontrib>Rizzi, Giorgio</creatorcontrib><creatorcontrib>Stamatakis, Alice M.</creatorcontrib><creatorcontrib>Ung, Randall L.</creatorcontrib><creatorcontrib>Stuber, Garret D.</creatorcontrib><title>The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding.</description><subject>Adaptation, Physiological</subject><subject>Amygdala - physiology</subject><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Behavioral neuroscience</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Channelrhodopsins</subject><subject>Circuits</subject><subject>Eating - physiology</subject><subject>Eating disorders</subject><subject>Energy consumption</subject><subject>Epidemics</subject><subject>Feeding</subject><subject>Feeding Behavior - physiology</subject><subject>Figs</subject><subject>Food</subject><subject>Food intake</subject><subject>Foods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABAergic Neurons - physiology</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Hypothalamus</subject><subject>Hypothalamus - physiology</subject><subject>Innervation</subject><subject>Joints</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Neural conduction</subject><subject>Neurons</subject><subject>Obesity</subject><subject>Obesity - physiopathology</subject><subject>Photoinhibition</subject><subject>Rabies virus</subject><subject>Septal Nuclei - physiology</subject><subject>Synapses - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0s1v0zAUAHALMbEyOHMCRUJIXLI9f8a5IE0VY5Mq7VLOluO8LK7SpNgJUv97XBoK7LKdfHg_P_t9EPKOwiWlTF1F57F3eEmZoJqyF2RBoZR5yYC_JAsArnINhTwnr2PcAKRYyV-RcyagYCVjC7Jet5jd9a2v_DiEfbb0wU1-zK6Da_2IbpwCZkOTjYmt7IjBdtntfjeMre3sdorZfYIYx5BiMbtBrH3_8IacNbaL-HY-L8j3m6_r5W2-uv92t7xe5U6BHHPFal5XEqyqG4WgVAmSadRWaCckU5qqUmrqpNWlAKioaJA7QF3p9I5W_IJ8OebdTdUWa4d9-kdndsFvbdibwXrzf6T3rXkYfhpBOZXikODznCAMP6ZUhtn66LDrbI_DFA3VoEFSzZ9BpVJaCp06_yQVvJA6DeNAPz6im2EKfWrab0WlZJIldXVULgwxBmxOJVIwhz0w8x6YeQ_SjQ__dubk_ww-gU8zsNHZrgm2dz7-dUVZpKd5cu-PbhPTfpzigilaClrwX9n6xUA</recordid><startdate>20130927</startdate><enddate>20130927</enddate><creator>Jennings, Joshua H.</creator><creator>Rizzi, Giorgio</creator><creator>Stamatakis, Alice M.</creator><creator>Ung, Randall L.</creator><creator>Stuber, Garret D.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130927</creationdate><title>The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding</title><author>Jennings, Joshua H. ; Rizzi, Giorgio ; Stamatakis, Alice M. ; Ung, Randall L. ; Stuber, Garret D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-62d3db50a6df6e06690528e8a48c45268169581c5a89400b14fe3c0e8b8eed863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Physiological</topic><topic>Amygdala - physiology</topic><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Behavioral neuroscience</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Channelrhodopsins</topic><topic>Circuits</topic><topic>Eating - physiology</topic><topic>Eating disorders</topic><topic>Energy consumption</topic><topic>Epidemics</topic><topic>Feeding</topic><topic>Feeding Behavior - physiology</topic><topic>Figs</topic><topic>Food</topic><topic>Food intake</topic><topic>Foods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABAergic Neurons - physiology</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Hypothalamus</topic><topic>Hypothalamus - physiology</topic><topic>Innervation</topic><topic>Joints</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Neural conduction</topic><topic>Neurons</topic><topic>Obesity</topic><topic>Obesity - physiopathology</topic><topic>Photoinhibition</topic><topic>Rabies virus</topic><topic>Septal Nuclei - physiology</topic><topic>Synapses - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jennings, Joshua H.</creatorcontrib><creatorcontrib>Rizzi, Giorgio</creatorcontrib><creatorcontrib>Stamatakis, Alice M.</creatorcontrib><creatorcontrib>Ung, Randall L.</creatorcontrib><creatorcontrib>Stuber, Garret D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jennings, Joshua H.</au><au>Rizzi, Giorgio</au><au>Stamatakis, Alice M.</au><au>Ung, Randall L.</au><au>Stuber, Garret D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-09-27</date><risdate>2013</risdate><volume>341</volume><issue>6153</issue><spage>1517</spage><epage>1521</epage><pages>1517-1521</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>24072922</pmid><doi>10.1126/science.1241812</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2013-09, Vol.341 (6153), p.1517-1521 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4131546 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | Adaptation, Physiological Amygdala - physiology Animals Bacterial Proteins - genetics Bacterial Proteins - metabolism Behavioral neuroscience Biological and medical sciences Brain Channelrhodopsins Circuits Eating - physiology Eating disorders Energy consumption Epidemics Feeding Feeding Behavior - physiology Figs Food Food intake Foods Fundamental and applied biological sciences. Psychology GABAergic Neurons - physiology gamma-Aminobutyric Acid - metabolism gamma-Aminobutyric Acid - physiology Hypothalamus Hypothalamus - physiology Innervation Joints Luminescent Proteins - genetics Luminescent Proteins - metabolism Male Medical sciences Metabolic diseases Mice Mice, Mutant Strains Neural conduction Neurons Obesity Obesity - physiopathology Photoinhibition Rabies virus Septal Nuclei - physiology Synapses - physiology Vertebrates: nervous system and sense organs |
title | The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Inhibitory%20Circuit%20Architecture%20of%20the%20Lateral%20Hypothalamus%20Orchestrates%20Feeding&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Jennings,%20Joshua%20H.&rft.date=2013-09-27&rft.volume=341&rft.issue=6153&rft.spage=1517&rft.epage=1521&rft.pages=1517-1521&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1241812&rft_dat=%3Cjstor_pubme%3E42619417%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437155252&rft_id=info:pmid/24072922&rft_jstor_id=42619417&rfr_iscdi=true |