The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding

The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feedi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2013-09, Vol.341 (6153), p.1517-1521
Hauptverfasser: Jennings, Joshua H., Rizzi, Giorgio, Stamatakis, Alice M., Ung, Randall L., Stuber, Garret D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1521
container_issue 6153
container_start_page 1517
container_title Science (American Association for the Advancement of Science)
container_volume 341
creator Jennings, Joshua H.
Rizzi, Giorgio
Stamatakis, Alice M.
Ung, Randall L.
Stuber, Garret D.
description The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding.
doi_str_mv 10.1126/science.1241812
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4131546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42619417</jstor_id><sourcerecordid>42619417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-62d3db50a6df6e06690528e8a48c45268169581c5a89400b14fe3c0e8b8eed863</originalsourceid><addsrcrecordid>eNqN0s1v0zAUAHALMbEyOHMCRUJIXLI9f8a5IE0VY5Mq7VLOluO8LK7SpNgJUv97XBoK7LKdfHg_P_t9EPKOwiWlTF1F57F3eEmZoJqyF2RBoZR5yYC_JAsArnINhTwnr2PcAKRYyV-RcyagYCVjC7Jet5jd9a2v_DiEfbb0wU1-zK6Da_2IbpwCZkOTjYmt7IjBdtntfjeMre3sdorZfYIYx5BiMbtBrH3_8IacNbaL-HY-L8j3m6_r5W2-uv92t7xe5U6BHHPFal5XEqyqG4WgVAmSadRWaCckU5qqUmrqpNWlAKioaJA7QF3p9I5W_IJ8OebdTdUWa4d9-kdndsFvbdibwXrzf6T3rXkYfhpBOZXikODznCAMP6ZUhtn66LDrbI_DFA3VoEFSzZ9BpVJaCp06_yQVvJA6DeNAPz6im2EKfWrab0WlZJIldXVULgwxBmxOJVIwhz0w8x6YeQ_SjQ__dubk_ww-gU8zsNHZrgm2dz7-dUVZpKd5cu-PbhPTfpzigilaClrwX9n6xUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437155252</pqid></control><display><type>article</type><title>The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Jennings, Joshua H. ; Rizzi, Giorgio ; Stamatakis, Alice M. ; Ung, Randall L. ; Stuber, Garret D.</creator><creatorcontrib>Jennings, Joshua H. ; Rizzi, Giorgio ; Stamatakis, Alice M. ; Ung, Randall L. ; Stuber, Garret D.</creatorcontrib><description>The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1241812</identifier><identifier>PMID: 24072922</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Adaptation, Physiological ; Amygdala - physiology ; Animals ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Behavioral neuroscience ; Biological and medical sciences ; Brain ; Channelrhodopsins ; Circuits ; Eating - physiology ; Eating disorders ; Energy consumption ; Epidemics ; Feeding ; Feeding Behavior - physiology ; Figs ; Food ; Food intake ; Foods ; Fundamental and applied biological sciences. Psychology ; GABAergic Neurons - physiology ; gamma-Aminobutyric Acid - metabolism ; gamma-Aminobutyric Acid - physiology ; Hypothalamus ; Hypothalamus - physiology ; Innervation ; Joints ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Male ; Medical sciences ; Metabolic diseases ; Mice ; Mice, Mutant Strains ; Neural conduction ; Neurons ; Obesity ; Obesity - physiopathology ; Photoinhibition ; Rabies virus ; Septal Nuclei - physiology ; Synapses - physiology ; Vertebrates: nervous system and sense organs</subject><ispartof>Science (American Association for the Advancement of Science), 2013-09, Vol.341 (6153), p.1517-1521</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-62d3db50a6df6e06690528e8a48c45268169581c5a89400b14fe3c0e8b8eed863</citedby><cites>FETCH-LOGICAL-c605t-62d3db50a6df6e06690528e8a48c45268169581c5a89400b14fe3c0e8b8eed863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42619417$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42619417$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27975253$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24072922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jennings, Joshua H.</creatorcontrib><creatorcontrib>Rizzi, Giorgio</creatorcontrib><creatorcontrib>Stamatakis, Alice M.</creatorcontrib><creatorcontrib>Ung, Randall L.</creatorcontrib><creatorcontrib>Stuber, Garret D.</creatorcontrib><title>The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding.</description><subject>Adaptation, Physiological</subject><subject>Amygdala - physiology</subject><subject>Animals</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Behavioral neuroscience</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Channelrhodopsins</subject><subject>Circuits</subject><subject>Eating - physiology</subject><subject>Eating disorders</subject><subject>Energy consumption</subject><subject>Epidemics</subject><subject>Feeding</subject><subject>Feeding Behavior - physiology</subject><subject>Figs</subject><subject>Food</subject><subject>Food intake</subject><subject>Foods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABAergic Neurons - physiology</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Hypothalamus</subject><subject>Hypothalamus - physiology</subject><subject>Innervation</subject><subject>Joints</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Neural conduction</subject><subject>Neurons</subject><subject>Obesity</subject><subject>Obesity - physiopathology</subject><subject>Photoinhibition</subject><subject>Rabies virus</subject><subject>Septal Nuclei - physiology</subject><subject>Synapses - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0s1v0zAUAHALMbEyOHMCRUJIXLI9f8a5IE0VY5Mq7VLOluO8LK7SpNgJUv97XBoK7LKdfHg_P_t9EPKOwiWlTF1F57F3eEmZoJqyF2RBoZR5yYC_JAsArnINhTwnr2PcAKRYyV-RcyagYCVjC7Jet5jd9a2v_DiEfbb0wU1-zK6Da_2IbpwCZkOTjYmt7IjBdtntfjeMre3sdorZfYIYx5BiMbtBrH3_8IacNbaL-HY-L8j3m6_r5W2-uv92t7xe5U6BHHPFal5XEqyqG4WgVAmSadRWaCckU5qqUmrqpNWlAKioaJA7QF3p9I5W_IJ8OebdTdUWa4d9-kdndsFvbdibwXrzf6T3rXkYfhpBOZXikODznCAMP6ZUhtn66LDrbI_DFA3VoEFSzZ9BpVJaCp06_yQVvJA6DeNAPz6im2EKfWrab0WlZJIldXVULgwxBmxOJVIwhz0w8x6YeQ_SjQ__dubk_ww-gU8zsNHZrgm2dz7-dUVZpKd5cu-PbhPTfpzigilaClrwX9n6xUA</recordid><startdate>20130927</startdate><enddate>20130927</enddate><creator>Jennings, Joshua H.</creator><creator>Rizzi, Giorgio</creator><creator>Stamatakis, Alice M.</creator><creator>Ung, Randall L.</creator><creator>Stuber, Garret D.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130927</creationdate><title>The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding</title><author>Jennings, Joshua H. ; Rizzi, Giorgio ; Stamatakis, Alice M. ; Ung, Randall L. ; Stuber, Garret D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-62d3db50a6df6e06690528e8a48c45268169581c5a89400b14fe3c0e8b8eed863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptation, Physiological</topic><topic>Amygdala - physiology</topic><topic>Animals</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Behavioral neuroscience</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Channelrhodopsins</topic><topic>Circuits</topic><topic>Eating - physiology</topic><topic>Eating disorders</topic><topic>Energy consumption</topic><topic>Epidemics</topic><topic>Feeding</topic><topic>Feeding Behavior - physiology</topic><topic>Figs</topic><topic>Food</topic><topic>Food intake</topic><topic>Foods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABAergic Neurons - physiology</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Hypothalamus</topic><topic>Hypothalamus - physiology</topic><topic>Innervation</topic><topic>Joints</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Neural conduction</topic><topic>Neurons</topic><topic>Obesity</topic><topic>Obesity - physiopathology</topic><topic>Photoinhibition</topic><topic>Rabies virus</topic><topic>Septal Nuclei - physiology</topic><topic>Synapses - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jennings, Joshua H.</creatorcontrib><creatorcontrib>Rizzi, Giorgio</creatorcontrib><creatorcontrib>Stamatakis, Alice M.</creatorcontrib><creatorcontrib>Ung, Randall L.</creatorcontrib><creatorcontrib>Stuber, Garret D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jennings, Joshua H.</au><au>Rizzi, Giorgio</au><au>Stamatakis, Alice M.</au><au>Ung, Randall L.</au><au>Stuber, Garret D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-09-27</date><risdate>2013</risdate><volume>341</volume><issue>6153</issue><spage>1517</spage><epage>1521</epage><pages>1517-1521</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>24072922</pmid><doi>10.1126/science.1241812</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2013-09, Vol.341 (6153), p.1517-1521
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4131546
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Adaptation, Physiological
Amygdala - physiology
Animals
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Behavioral neuroscience
Biological and medical sciences
Brain
Channelrhodopsins
Circuits
Eating - physiology
Eating disorders
Energy consumption
Epidemics
Feeding
Feeding Behavior - physiology
Figs
Food
Food intake
Foods
Fundamental and applied biological sciences. Psychology
GABAergic Neurons - physiology
gamma-Aminobutyric Acid - metabolism
gamma-Aminobutyric Acid - physiology
Hypothalamus
Hypothalamus - physiology
Innervation
Joints
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Male
Medical sciences
Metabolic diseases
Mice
Mice, Mutant Strains
Neural conduction
Neurons
Obesity
Obesity - physiopathology
Photoinhibition
Rabies virus
Septal Nuclei - physiology
Synapses - physiology
Vertebrates: nervous system and sense organs
title The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Inhibitory%20Circuit%20Architecture%20of%20the%20Lateral%20Hypothalamus%20Orchestrates%20Feeding&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Jennings,%20Joshua%20H.&rft.date=2013-09-27&rft.volume=341&rft.issue=6153&rft.spage=1517&rft.epage=1521&rft.pages=1517-1521&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1241812&rft_dat=%3Cjstor_pubme%3E42619417%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437155252&rft_id=info:pmid/24072922&rft_jstor_id=42619417&rfr_iscdi=true