Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels

Many genetic variants associated with human disease have been found to be associated with alterations in mRNA expression. Although it is commonly assumed that mRNA expression changes will lead to consequent changes in protein levels, methodological challenges have limited our ability to test the deg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2014-08, Vol.95 (2), p.194-208
Hauptverfasser: Hause, Ronald J., Stark, Amy L., Antao, Nirav N., Gorsic, Lidija K., Chung, Sophie H., Brown, Christopher D., Wong, Shan S., Gill, Daniel F., Myers, Jamie L., To, Lida Anita, White, Kevin P., Dolan, M. Eileen, Jones, Richard Baker
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 2
container_start_page 194
container_title American journal of human genetics
container_volume 95
creator Hause, Ronald J.
Stark, Amy L.
Antao, Nirav N.
Gorsic, Lidija K.
Chung, Sophie H.
Brown, Christopher D.
Wong, Shan S.
Gill, Daniel F.
Myers, Jamie L.
To, Lida Anita
White, Kevin P.
Dolan, M. Eileen
Jones, Richard Baker
description Many genetic variants associated with human disease have been found to be associated with alterations in mRNA expression. Although it is commonly assumed that mRNA expression changes will lead to consequent changes in protein levels, methodological challenges have limited our ability to test the degree to which this assumption holds true. Here, we further developed the micro-western array approach and globally examined relationships between human genetic variation and cellular protein levels. We collected more than 250,000 protein level measurements comprising 441 transcription factor and signaling protein isoforms across 68 Yoruba (YRI) HapMap lymphoblastoid cell lines (LCLs) and identified 12 cis and 160 trans protein level QTLs (pQTLs) at a false discovery rate (FDR) of 20%. Whereas up to two thirds of cis mRNA expression QTLs (eQTLs) were also pQTLs, many pQTLs were not associated with mRNA expression. Notably, we replicated and functionally validated a trans pQTL relationship between the KARS lysyl-tRNA synthetase locus and levels of the DIDO1 protein. This study demonstrates proof of concept in applying an antibody-based microarray approach to iteratively measure the levels of human proteins and relate these levels to human genome variation and other genomic data sets. Our results suggest that protein-based mechanisms might functionally buffer genetic alterations that influence mRNA expression levels and that pQTLs might contribute phenotypic diversity to a human population independently of influences on mRNA expression.
doi_str_mv 10.1016/j.ajhg.2014.07.005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4129400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929714003140</els_id><sourcerecordid>1552373113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-8bcc9081e9706856a61003306e306ff71ae53035e7e11a456aedb4434795cbca3</originalsourceid><addsrcrecordid>eNp9kcGLEzEYxYO4uLX6D3iQAS9eZvbLZDKZARGW4q6Fwi64eg1p5ps2wzSpSabif2_arot68BBCkt97ycsj5A2FggKtr4ZCDdtNUQKtChAFAH9GZpQzkdc18OdkBgBl3patuCQvQxgAKG2AvSCXJYdG1JTOyI9lhzaa3mgVjbOZsl32TY2mOy9dn92ixWh02vVG2RiyuFUxW9p-nNBqzB68skF7sz8JbpSOzp9sFjiO2RezscnObrJ77yIam63wgGN4RS56NQZ8_TjPydebTw-Lz_nq7na5uF7lmnMW82atdQsNxVZA3fBa1RSAMagxjb4XVCFnwDgKpFRVCcBuXVWsEi3Xa63YnHw8--6n9Q47ncJ6Ncq9Nzvlf0qnjPz7xJqt3LiDrGjZVumuOXn_aODd9wlDlDsTdIqmLLopSMp5yQSjlCX03T_o4Caf4p-oqmyYECJR5ZnS3oXgsX96DAV57FUO8tirPPYqQcjUaxK9_TPGk-R3kQn4cAbS3-LBoJdBm2M_nfGoo-yc-Z__L49stSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554283777</pqid></control><display><type>article</type><title>Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hause, Ronald J. ; Stark, Amy L. ; Antao, Nirav N. ; Gorsic, Lidija K. ; Chung, Sophie H. ; Brown, Christopher D. ; Wong, Shan S. ; Gill, Daniel F. ; Myers, Jamie L. ; To, Lida Anita ; White, Kevin P. ; Dolan, M. Eileen ; Jones, Richard Baker</creator><creatorcontrib>Hause, Ronald J. ; Stark, Amy L. ; Antao, Nirav N. ; Gorsic, Lidija K. ; Chung, Sophie H. ; Brown, Christopher D. ; Wong, Shan S. ; Gill, Daniel F. ; Myers, Jamie L. ; To, Lida Anita ; White, Kevin P. ; Dolan, M. Eileen ; Jones, Richard Baker</creatorcontrib><description>Many genetic variants associated with human disease have been found to be associated with alterations in mRNA expression. Although it is commonly assumed that mRNA expression changes will lead to consequent changes in protein levels, methodological challenges have limited our ability to test the degree to which this assumption holds true. Here, we further developed the micro-western array approach and globally examined relationships between human genetic variation and cellular protein levels. We collected more than 250,000 protein level measurements comprising 441 transcription factor and signaling protein isoforms across 68 Yoruba (YRI) HapMap lymphoblastoid cell lines (LCLs) and identified 12 cis and 160 trans protein level QTLs (pQTLs) at a false discovery rate (FDR) of 20%. Whereas up to two thirds of cis mRNA expression QTLs (eQTLs) were also pQTLs, many pQTLs were not associated with mRNA expression. Notably, we replicated and functionally validated a trans pQTL relationship between the KARS lysyl-tRNA synthetase locus and levels of the DIDO1 protein. This study demonstrates proof of concept in applying an antibody-based microarray approach to iteratively measure the levels of human proteins and relate these levels to human genome variation and other genomic data sets. Our results suggest that protein-based mechanisms might functionally buffer genetic alterations that influence mRNA expression levels and that pQTLs might contribute phenotypic diversity to a human population independently of influences on mRNA expression.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2014.07.005</identifier><identifier>PMID: 25087611</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antibodies - genetics ; Antibodies - immunology ; Base Sequence ; Cell Line ; Chromosome Mapping ; DNA-Binding Proteins - biosynthesis ; DNA-Binding Proteins - genetics ; Gene Expression ; Genetic Variation ; Genetics ; Genome, Human - genetics ; Genome-Wide Association Study ; Genomics ; Genotype ; Genotype &amp; phenotype ; Humans ; Models, Genetic ; Protein Array Analysis ; Proteins ; Proteins - genetics ; Proteins - metabolism ; Proteome - genetics ; Quantitative Trait Loci - genetics ; Ribonucleic acid ; RNA ; RNA Interference ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; RNA, Small Interfering ; Sequence Analysis, DNA ; Signal Transduction - genetics ; Transcription Factors - genetics ; Transcriptome - genetics</subject><ispartof>American journal of human genetics, 2014-08, Vol.95 (2), p.194-208</ispartof><rights>2014 The Authors</rights><rights>Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Cell Press Aug 7, 2014</rights><rights>2014 The Authors 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-8bcc9081e9706856a61003306e306ff71ae53035e7e11a456aedb4434795cbca3</citedby><cites>FETCH-LOGICAL-c553t-8bcc9081e9706856a61003306e306ff71ae53035e7e11a456aedb4434795cbca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4129400/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002929714003140$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25087611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hause, Ronald J.</creatorcontrib><creatorcontrib>Stark, Amy L.</creatorcontrib><creatorcontrib>Antao, Nirav N.</creatorcontrib><creatorcontrib>Gorsic, Lidija K.</creatorcontrib><creatorcontrib>Chung, Sophie H.</creatorcontrib><creatorcontrib>Brown, Christopher D.</creatorcontrib><creatorcontrib>Wong, Shan S.</creatorcontrib><creatorcontrib>Gill, Daniel F.</creatorcontrib><creatorcontrib>Myers, Jamie L.</creatorcontrib><creatorcontrib>To, Lida Anita</creatorcontrib><creatorcontrib>White, Kevin P.</creatorcontrib><creatorcontrib>Dolan, M. Eileen</creatorcontrib><creatorcontrib>Jones, Richard Baker</creatorcontrib><title>Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Many genetic variants associated with human disease have been found to be associated with alterations in mRNA expression. Although it is commonly assumed that mRNA expression changes will lead to consequent changes in protein levels, methodological challenges have limited our ability to test the degree to which this assumption holds true. Here, we further developed the micro-western array approach and globally examined relationships between human genetic variation and cellular protein levels. We collected more than 250,000 protein level measurements comprising 441 transcription factor and signaling protein isoforms across 68 Yoruba (YRI) HapMap lymphoblastoid cell lines (LCLs) and identified 12 cis and 160 trans protein level QTLs (pQTLs) at a false discovery rate (FDR) of 20%. Whereas up to two thirds of cis mRNA expression QTLs (eQTLs) were also pQTLs, many pQTLs were not associated with mRNA expression. Notably, we replicated and functionally validated a trans pQTL relationship between the KARS lysyl-tRNA synthetase locus and levels of the DIDO1 protein. This study demonstrates proof of concept in applying an antibody-based microarray approach to iteratively measure the levels of human proteins and relate these levels to human genome variation and other genomic data sets. Our results suggest that protein-based mechanisms might functionally buffer genetic alterations that influence mRNA expression levels and that pQTLs might contribute phenotypic diversity to a human population independently of influences on mRNA expression.</description><subject>Antibodies - genetics</subject><subject>Antibodies - immunology</subject><subject>Base Sequence</subject><subject>Cell Line</subject><subject>Chromosome Mapping</subject><subject>DNA-Binding Proteins - biosynthesis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Gene Expression</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genome, Human - genetics</subject><subject>Genome-Wide Association Study</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotype &amp; phenotype</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>Protein Array Analysis</subject><subject>Proteins</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Proteome - genetics</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Small Interfering</subject><subject>Sequence Analysis, DNA</subject><subject>Signal Transduction - genetics</subject><subject>Transcription Factors - genetics</subject><subject>Transcriptome - genetics</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcGLEzEYxYO4uLX6D3iQAS9eZvbLZDKZARGW4q6Fwi64eg1p5ps2wzSpSabif2_arot68BBCkt97ycsj5A2FggKtr4ZCDdtNUQKtChAFAH9GZpQzkdc18OdkBgBl3patuCQvQxgAKG2AvSCXJYdG1JTOyI9lhzaa3mgVjbOZsl32TY2mOy9dn92ixWh02vVG2RiyuFUxW9p-nNBqzB68skF7sz8JbpSOzp9sFjiO2RezscnObrJ77yIam63wgGN4RS56NQZ8_TjPydebTw-Lz_nq7na5uF7lmnMW82atdQsNxVZA3fBa1RSAMagxjb4XVCFnwDgKpFRVCcBuXVWsEi3Xa63YnHw8--6n9Q47ncJ6Ncq9Nzvlf0qnjPz7xJqt3LiDrGjZVumuOXn_aODd9wlDlDsTdIqmLLopSMp5yQSjlCX03T_o4Caf4p-oqmyYECJR5ZnS3oXgsX96DAV57FUO8tirPPYqQcjUaxK9_TPGk-R3kQn4cAbS3-LBoJdBm2M_nfGoo-yc-Z__L49stSg</recordid><startdate>20140807</startdate><enddate>20140807</enddate><creator>Hause, Ronald J.</creator><creator>Stark, Amy L.</creator><creator>Antao, Nirav N.</creator><creator>Gorsic, Lidija K.</creator><creator>Chung, Sophie H.</creator><creator>Brown, Christopher D.</creator><creator>Wong, Shan S.</creator><creator>Gill, Daniel F.</creator><creator>Myers, Jamie L.</creator><creator>To, Lida Anita</creator><creator>White, Kevin P.</creator><creator>Dolan, M. Eileen</creator><creator>Jones, Richard Baker</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140807</creationdate><title>Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels</title><author>Hause, Ronald J. ; Stark, Amy L. ; Antao, Nirav N. ; Gorsic, Lidija K. ; Chung, Sophie H. ; Brown, Christopher D. ; Wong, Shan S. ; Gill, Daniel F. ; Myers, Jamie L. ; To, Lida Anita ; White, Kevin P. ; Dolan, M. Eileen ; Jones, Richard Baker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-8bcc9081e9706856a61003306e306ff71ae53035e7e11a456aedb4434795cbca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antibodies - genetics</topic><topic>Antibodies - immunology</topic><topic>Base Sequence</topic><topic>Cell Line</topic><topic>Chromosome Mapping</topic><topic>DNA-Binding Proteins - biosynthesis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Gene Expression</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genome, Human - genetics</topic><topic>Genome-Wide Association Study</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotype &amp; phenotype</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>Protein Array Analysis</topic><topic>Proteins</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Proteome - genetics</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Small Interfering</topic><topic>Sequence Analysis, DNA</topic><topic>Signal Transduction - genetics</topic><topic>Transcription Factors - genetics</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hause, Ronald J.</creatorcontrib><creatorcontrib>Stark, Amy L.</creatorcontrib><creatorcontrib>Antao, Nirav N.</creatorcontrib><creatorcontrib>Gorsic, Lidija K.</creatorcontrib><creatorcontrib>Chung, Sophie H.</creatorcontrib><creatorcontrib>Brown, Christopher D.</creatorcontrib><creatorcontrib>Wong, Shan S.</creatorcontrib><creatorcontrib>Gill, Daniel F.</creatorcontrib><creatorcontrib>Myers, Jamie L.</creatorcontrib><creatorcontrib>To, Lida Anita</creatorcontrib><creatorcontrib>White, Kevin P.</creatorcontrib><creatorcontrib>Dolan, M. Eileen</creatorcontrib><creatorcontrib>Jones, Richard Baker</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hause, Ronald J.</au><au>Stark, Amy L.</au><au>Antao, Nirav N.</au><au>Gorsic, Lidija K.</au><au>Chung, Sophie H.</au><au>Brown, Christopher D.</au><au>Wong, Shan S.</au><au>Gill, Daniel F.</au><au>Myers, Jamie L.</au><au>To, Lida Anita</au><au>White, Kevin P.</au><au>Dolan, M. Eileen</au><au>Jones, Richard Baker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2014-08-07</date><risdate>2014</risdate><volume>95</volume><issue>2</issue><spage>194</spage><epage>208</epage><pages>194-208</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><abstract>Many genetic variants associated with human disease have been found to be associated with alterations in mRNA expression. Although it is commonly assumed that mRNA expression changes will lead to consequent changes in protein levels, methodological challenges have limited our ability to test the degree to which this assumption holds true. Here, we further developed the micro-western array approach and globally examined relationships between human genetic variation and cellular protein levels. We collected more than 250,000 protein level measurements comprising 441 transcription factor and signaling protein isoforms across 68 Yoruba (YRI) HapMap lymphoblastoid cell lines (LCLs) and identified 12 cis and 160 trans protein level QTLs (pQTLs) at a false discovery rate (FDR) of 20%. Whereas up to two thirds of cis mRNA expression QTLs (eQTLs) were also pQTLs, many pQTLs were not associated with mRNA expression. Notably, we replicated and functionally validated a trans pQTL relationship between the KARS lysyl-tRNA synthetase locus and levels of the DIDO1 protein. This study demonstrates proof of concept in applying an antibody-based microarray approach to iteratively measure the levels of human proteins and relate these levels to human genome variation and other genomic data sets. Our results suggest that protein-based mechanisms might functionally buffer genetic alterations that influence mRNA expression levels and that pQTLs might contribute phenotypic diversity to a human population independently of influences on mRNA expression.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25087611</pmid><doi>10.1016/j.ajhg.2014.07.005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 2014-08, Vol.95 (2), p.194-208
issn 0002-9297
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4129400
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Antibodies - genetics
Antibodies - immunology
Base Sequence
Cell Line
Chromosome Mapping
DNA-Binding Proteins - biosynthesis
DNA-Binding Proteins - genetics
Gene Expression
Genetic Variation
Genetics
Genome, Human - genetics
Genome-Wide Association Study
Genomics
Genotype
Genotype & phenotype
Humans
Models, Genetic
Protein Array Analysis
Proteins
Proteins - genetics
Proteins - metabolism
Proteome - genetics
Quantitative Trait Loci - genetics
Ribonucleic acid
RNA
RNA Interference
RNA, Messenger - biosynthesis
RNA, Messenger - genetics
RNA, Small Interfering
Sequence Analysis, DNA
Signal Transduction - genetics
Transcription Factors - genetics
Transcriptome - genetics
title Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20Validation%20of%20Genetic%20Variants%20that%20Influence%20Transcription%20Factor%20and%20Cell%20Signaling%20Protein%20Levels&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Hause,%20Ronald%C2%A0J.&rft.date=2014-08-07&rft.volume=95&rft.issue=2&rft.spage=194&rft.epage=208&rft.pages=194-208&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2014.07.005&rft_dat=%3Cproquest_pubme%3E1552373113%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554283777&rft_id=info:pmid/25087611&rft_els_id=S0002929714003140&rfr_iscdi=true