Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels
Many genetic variants associated with human disease have been found to be associated with alterations in mRNA expression. Although it is commonly assumed that mRNA expression changes will lead to consequent changes in protein levels, methodological challenges have limited our ability to test the deg...
Gespeichert in:
Veröffentlicht in: | American journal of human genetics 2014-08, Vol.95 (2), p.194-208 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | 2 |
container_start_page | 194 |
container_title | American journal of human genetics |
container_volume | 95 |
creator | Hause, Ronald J. Stark, Amy L. Antao, Nirav N. Gorsic, Lidija K. Chung, Sophie H. Brown, Christopher D. Wong, Shan S. Gill, Daniel F. Myers, Jamie L. To, Lida Anita White, Kevin P. Dolan, M. Eileen Jones, Richard Baker |
description | Many genetic variants associated with human disease have been found to be associated with alterations in mRNA expression. Although it is commonly assumed that mRNA expression changes will lead to consequent changes in protein levels, methodological challenges have limited our ability to test the degree to which this assumption holds true. Here, we further developed the micro-western array approach and globally examined relationships between human genetic variation and cellular protein levels. We collected more than 250,000 protein level measurements comprising 441 transcription factor and signaling protein isoforms across 68 Yoruba (YRI) HapMap lymphoblastoid cell lines (LCLs) and identified 12 cis and 160 trans protein level QTLs (pQTLs) at a false discovery rate (FDR) of 20%. Whereas up to two thirds of cis mRNA expression QTLs (eQTLs) were also pQTLs, many pQTLs were not associated with mRNA expression. Notably, we replicated and functionally validated a trans pQTL relationship between the KARS lysyl-tRNA synthetase locus and levels of the DIDO1 protein. This study demonstrates proof of concept in applying an antibody-based microarray approach to iteratively measure the levels of human proteins and relate these levels to human genome variation and other genomic data sets. Our results suggest that protein-based mechanisms might functionally buffer genetic alterations that influence mRNA expression levels and that pQTLs might contribute phenotypic diversity to a human population independently of influences on mRNA expression. |
doi_str_mv | 10.1016/j.ajhg.2014.07.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4129400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929714003140</els_id><sourcerecordid>1552373113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-8bcc9081e9706856a61003306e306ff71ae53035e7e11a456aedb4434795cbca3</originalsourceid><addsrcrecordid>eNp9kcGLEzEYxYO4uLX6D3iQAS9eZvbLZDKZARGW4q6Fwi64eg1p5ps2wzSpSabif2_arot68BBCkt97ycsj5A2FggKtr4ZCDdtNUQKtChAFAH9GZpQzkdc18OdkBgBl3patuCQvQxgAKG2AvSCXJYdG1JTOyI9lhzaa3mgVjbOZsl32TY2mOy9dn92ixWh02vVG2RiyuFUxW9p-nNBqzB68skF7sz8JbpSOzp9sFjiO2RezscnObrJ77yIam63wgGN4RS56NQZ8_TjPydebTw-Lz_nq7na5uF7lmnMW82atdQsNxVZA3fBa1RSAMagxjb4XVCFnwDgKpFRVCcBuXVWsEi3Xa63YnHw8--6n9Q47ncJ6Ncq9Nzvlf0qnjPz7xJqt3LiDrGjZVumuOXn_aODd9wlDlDsTdIqmLLopSMp5yQSjlCX03T_o4Caf4p-oqmyYECJR5ZnS3oXgsX96DAV57FUO8tirPPYqQcjUaxK9_TPGk-R3kQn4cAbS3-LBoJdBm2M_nfGoo-yc-Z__L49stSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554283777</pqid></control><display><type>article</type><title>Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Hause, Ronald J. ; Stark, Amy L. ; Antao, Nirav N. ; Gorsic, Lidija K. ; Chung, Sophie H. ; Brown, Christopher D. ; Wong, Shan S. ; Gill, Daniel F. ; Myers, Jamie L. ; To, Lida Anita ; White, Kevin P. ; Dolan, M. Eileen ; Jones, Richard Baker</creator><creatorcontrib>Hause, Ronald J. ; Stark, Amy L. ; Antao, Nirav N. ; Gorsic, Lidija K. ; Chung, Sophie H. ; Brown, Christopher D. ; Wong, Shan S. ; Gill, Daniel F. ; Myers, Jamie L. ; To, Lida Anita ; White, Kevin P. ; Dolan, M. Eileen ; Jones, Richard Baker</creatorcontrib><description>Many genetic variants associated with human disease have been found to be associated with alterations in mRNA expression. Although it is commonly assumed that mRNA expression changes will lead to consequent changes in protein levels, methodological challenges have limited our ability to test the degree to which this assumption holds true. Here, we further developed the micro-western array approach and globally examined relationships between human genetic variation and cellular protein levels. We collected more than 250,000 protein level measurements comprising 441 transcription factor and signaling protein isoforms across 68 Yoruba (YRI) HapMap lymphoblastoid cell lines (LCLs) and identified 12 cis and 160 trans protein level QTLs (pQTLs) at a false discovery rate (FDR) of 20%. Whereas up to two thirds of cis mRNA expression QTLs (eQTLs) were also pQTLs, many pQTLs were not associated with mRNA expression. Notably, we replicated and functionally validated a trans pQTL relationship between the KARS lysyl-tRNA synthetase locus and levels of the DIDO1 protein. This study demonstrates proof of concept in applying an antibody-based microarray approach to iteratively measure the levels of human proteins and relate these levels to human genome variation and other genomic data sets. Our results suggest that protein-based mechanisms might functionally buffer genetic alterations that influence mRNA expression levels and that pQTLs might contribute phenotypic diversity to a human population independently of influences on mRNA expression.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2014.07.005</identifier><identifier>PMID: 25087611</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antibodies - genetics ; Antibodies - immunology ; Base Sequence ; Cell Line ; Chromosome Mapping ; DNA-Binding Proteins - biosynthesis ; DNA-Binding Proteins - genetics ; Gene Expression ; Genetic Variation ; Genetics ; Genome, Human - genetics ; Genome-Wide Association Study ; Genomics ; Genotype ; Genotype & phenotype ; Humans ; Models, Genetic ; Protein Array Analysis ; Proteins ; Proteins - genetics ; Proteins - metabolism ; Proteome - genetics ; Quantitative Trait Loci - genetics ; Ribonucleic acid ; RNA ; RNA Interference ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; RNA, Small Interfering ; Sequence Analysis, DNA ; Signal Transduction - genetics ; Transcription Factors - genetics ; Transcriptome - genetics</subject><ispartof>American journal of human genetics, 2014-08, Vol.95 (2), p.194-208</ispartof><rights>2014 The Authors</rights><rights>Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Cell Press Aug 7, 2014</rights><rights>2014 The Authors 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-8bcc9081e9706856a61003306e306ff71ae53035e7e11a456aedb4434795cbca3</citedby><cites>FETCH-LOGICAL-c553t-8bcc9081e9706856a61003306e306ff71ae53035e7e11a456aedb4434795cbca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4129400/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002929714003140$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25087611$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hause, Ronald J.</creatorcontrib><creatorcontrib>Stark, Amy L.</creatorcontrib><creatorcontrib>Antao, Nirav N.</creatorcontrib><creatorcontrib>Gorsic, Lidija K.</creatorcontrib><creatorcontrib>Chung, Sophie H.</creatorcontrib><creatorcontrib>Brown, Christopher D.</creatorcontrib><creatorcontrib>Wong, Shan S.</creatorcontrib><creatorcontrib>Gill, Daniel F.</creatorcontrib><creatorcontrib>Myers, Jamie L.</creatorcontrib><creatorcontrib>To, Lida Anita</creatorcontrib><creatorcontrib>White, Kevin P.</creatorcontrib><creatorcontrib>Dolan, M. Eileen</creatorcontrib><creatorcontrib>Jones, Richard Baker</creatorcontrib><title>Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Many genetic variants associated with human disease have been found to be associated with alterations in mRNA expression. Although it is commonly assumed that mRNA expression changes will lead to consequent changes in protein levels, methodological challenges have limited our ability to test the degree to which this assumption holds true. Here, we further developed the micro-western array approach and globally examined relationships between human genetic variation and cellular protein levels. We collected more than 250,000 protein level measurements comprising 441 transcription factor and signaling protein isoforms across 68 Yoruba (YRI) HapMap lymphoblastoid cell lines (LCLs) and identified 12 cis and 160 trans protein level QTLs (pQTLs) at a false discovery rate (FDR) of 20%. Whereas up to two thirds of cis mRNA expression QTLs (eQTLs) were also pQTLs, many pQTLs were not associated with mRNA expression. Notably, we replicated and functionally validated a trans pQTL relationship between the KARS lysyl-tRNA synthetase locus and levels of the DIDO1 protein. This study demonstrates proof of concept in applying an antibody-based microarray approach to iteratively measure the levels of human proteins and relate these levels to human genome variation and other genomic data sets. Our results suggest that protein-based mechanisms might functionally buffer genetic alterations that influence mRNA expression levels and that pQTLs might contribute phenotypic diversity to a human population independently of influences on mRNA expression.</description><subject>Antibodies - genetics</subject><subject>Antibodies - immunology</subject><subject>Base Sequence</subject><subject>Cell Line</subject><subject>Chromosome Mapping</subject><subject>DNA-Binding Proteins - biosynthesis</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Gene Expression</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genome, Human - genetics</subject><subject>Genome-Wide Association Study</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>Protein Array Analysis</subject><subject>Proteins</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Proteome - genetics</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Interference</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Small Interfering</subject><subject>Sequence Analysis, DNA</subject><subject>Signal Transduction - genetics</subject><subject>Transcription Factors - genetics</subject><subject>Transcriptome - genetics</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcGLEzEYxYO4uLX6D3iQAS9eZvbLZDKZARGW4q6Fwi64eg1p5ps2wzSpSabif2_arot68BBCkt97ycsj5A2FggKtr4ZCDdtNUQKtChAFAH9GZpQzkdc18OdkBgBl3patuCQvQxgAKG2AvSCXJYdG1JTOyI9lhzaa3mgVjbOZsl32TY2mOy9dn92ixWh02vVG2RiyuFUxW9p-nNBqzB68skF7sz8JbpSOzp9sFjiO2RezscnObrJ77yIam63wgGN4RS56NQZ8_TjPydebTw-Lz_nq7na5uF7lmnMW82atdQsNxVZA3fBa1RSAMagxjb4XVCFnwDgKpFRVCcBuXVWsEi3Xa63YnHw8--6n9Q47ncJ6Ncq9Nzvlf0qnjPz7xJqt3LiDrGjZVumuOXn_aODd9wlDlDsTdIqmLLopSMp5yQSjlCX03T_o4Caf4p-oqmyYECJR5ZnS3oXgsX96DAV57FUO8tirPPYqQcjUaxK9_TPGk-R3kQn4cAbS3-LBoJdBm2M_nfGoo-yc-Z__L49stSg</recordid><startdate>20140807</startdate><enddate>20140807</enddate><creator>Hause, Ronald J.</creator><creator>Stark, Amy L.</creator><creator>Antao, Nirav N.</creator><creator>Gorsic, Lidija K.</creator><creator>Chung, Sophie H.</creator><creator>Brown, Christopher D.</creator><creator>Wong, Shan S.</creator><creator>Gill, Daniel F.</creator><creator>Myers, Jamie L.</creator><creator>To, Lida Anita</creator><creator>White, Kevin P.</creator><creator>Dolan, M. Eileen</creator><creator>Jones, Richard Baker</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140807</creationdate><title>Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels</title><author>Hause, Ronald J. ; Stark, Amy L. ; Antao, Nirav N. ; Gorsic, Lidija K. ; Chung, Sophie H. ; Brown, Christopher D. ; Wong, Shan S. ; Gill, Daniel F. ; Myers, Jamie L. ; To, Lida Anita ; White, Kevin P. ; Dolan, M. Eileen ; Jones, Richard Baker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-8bcc9081e9706856a61003306e306ff71ae53035e7e11a456aedb4434795cbca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antibodies - genetics</topic><topic>Antibodies - immunology</topic><topic>Base Sequence</topic><topic>Cell Line</topic><topic>Chromosome Mapping</topic><topic>DNA-Binding Proteins - biosynthesis</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Gene Expression</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genome, Human - genetics</topic><topic>Genome-Wide Association Study</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>Protein Array Analysis</topic><topic>Proteins</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Proteome - genetics</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Interference</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Small Interfering</topic><topic>Sequence Analysis, DNA</topic><topic>Signal Transduction - genetics</topic><topic>Transcription Factors - genetics</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hause, Ronald J.</creatorcontrib><creatorcontrib>Stark, Amy L.</creatorcontrib><creatorcontrib>Antao, Nirav N.</creatorcontrib><creatorcontrib>Gorsic, Lidija K.</creatorcontrib><creatorcontrib>Chung, Sophie H.</creatorcontrib><creatorcontrib>Brown, Christopher D.</creatorcontrib><creatorcontrib>Wong, Shan S.</creatorcontrib><creatorcontrib>Gill, Daniel F.</creatorcontrib><creatorcontrib>Myers, Jamie L.</creatorcontrib><creatorcontrib>To, Lida Anita</creatorcontrib><creatorcontrib>White, Kevin P.</creatorcontrib><creatorcontrib>Dolan, M. Eileen</creatorcontrib><creatorcontrib>Jones, Richard Baker</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hause, Ronald J.</au><au>Stark, Amy L.</au><au>Antao, Nirav N.</au><au>Gorsic, Lidija K.</au><au>Chung, Sophie H.</au><au>Brown, Christopher D.</au><au>Wong, Shan S.</au><au>Gill, Daniel F.</au><au>Myers, Jamie L.</au><au>To, Lida Anita</au><au>White, Kevin P.</au><au>Dolan, M. Eileen</au><au>Jones, Richard Baker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2014-08-07</date><risdate>2014</risdate><volume>95</volume><issue>2</issue><spage>194</spage><epage>208</epage><pages>194-208</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><abstract>Many genetic variants associated with human disease have been found to be associated with alterations in mRNA expression. Although it is commonly assumed that mRNA expression changes will lead to consequent changes in protein levels, methodological challenges have limited our ability to test the degree to which this assumption holds true. Here, we further developed the micro-western array approach and globally examined relationships between human genetic variation and cellular protein levels. We collected more than 250,000 protein level measurements comprising 441 transcription factor and signaling protein isoforms across 68 Yoruba (YRI) HapMap lymphoblastoid cell lines (LCLs) and identified 12 cis and 160 trans protein level QTLs (pQTLs) at a false discovery rate (FDR) of 20%. Whereas up to two thirds of cis mRNA expression QTLs (eQTLs) were also pQTLs, many pQTLs were not associated with mRNA expression. Notably, we replicated and functionally validated a trans pQTL relationship between the KARS lysyl-tRNA synthetase locus and levels of the DIDO1 protein. This study demonstrates proof of concept in applying an antibody-based microarray approach to iteratively measure the levels of human proteins and relate these levels to human genome variation and other genomic data sets. Our results suggest that protein-based mechanisms might functionally buffer genetic alterations that influence mRNA expression levels and that pQTLs might contribute phenotypic diversity to a human population independently of influences on mRNA expression.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25087611</pmid><doi>10.1016/j.ajhg.2014.07.005</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9297 |
ispartof | American journal of human genetics, 2014-08, Vol.95 (2), p.194-208 |
issn | 0002-9297 1537-6605 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4129400 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Antibodies - genetics Antibodies - immunology Base Sequence Cell Line Chromosome Mapping DNA-Binding Proteins - biosynthesis DNA-Binding Proteins - genetics Gene Expression Genetic Variation Genetics Genome, Human - genetics Genome-Wide Association Study Genomics Genotype Genotype & phenotype Humans Models, Genetic Protein Array Analysis Proteins Proteins - genetics Proteins - metabolism Proteome - genetics Quantitative Trait Loci - genetics Ribonucleic acid RNA RNA Interference RNA, Messenger - biosynthesis RNA, Messenger - genetics RNA, Small Interfering Sequence Analysis, DNA Signal Transduction - genetics Transcription Factors - genetics Transcriptome - genetics |
title | Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20Validation%20of%20Genetic%20Variants%20that%20Influence%20Transcription%20Factor%20and%20Cell%20Signaling%20Protein%20Levels&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Hause,%20Ronald%C2%A0J.&rft.date=2014-08-07&rft.volume=95&rft.issue=2&rft.spage=194&rft.epage=208&rft.pages=194-208&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2014.07.005&rft_dat=%3Cproquest_pubme%3E1552373113%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554283777&rft_id=info:pmid/25087611&rft_els_id=S0002929714003140&rfr_iscdi=true |