Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution

Optical tweezers use the momentum of photons to trap and manipulate microscopic objects, contact-free, in three dimensions. Although this technique has been widely used in biology and nanotechnology to study molecular motors, biopolymers and nanostructures, its application to study viruses has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2014-08, Vol.9 (8), p.624-630
Hauptverfasser: Pang, Yuanjie, Song, Hanna, Kim, Jin H., Hou, Ximiao, Cheng, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 630
container_issue 8
container_start_page 624
container_title Nature nanotechnology
container_volume 9
creator Pang, Yuanjie
Song, Hanna
Kim, Jin H.
Hou, Ximiao
Cheng, Wei
description Optical tweezers use the momentum of photons to trap and manipulate microscopic objects, contact-free, in three dimensions. Although this technique has been widely used in biology and nanotechnology to study molecular motors, biopolymers and nanostructures, its application to study viruses has been very limited, largely due to their small size. Here, using optical tweezers that can simultaneously resolve two-photon fluorescence at the single-molecule level, we show that individual HIV-1 viruses can be optically trapped and manipulated, allowing multi-parameter analysis of single virions in culture fluid under native conditions. We show that individual HIV-1 differs in the numbers of envelope glycoproteins by more than one order of magnitude, which implies substantial heterogeneity of these virions in transmission and infection at the single-particle level. Analogous to flow cytometry for cells, this fluid-based technique may allow ultrasensitive detection, multi-parameter analysis and sorting of viruses and other nanoparticles in biological fluid with single-molecule resolution. Trapping of single HIV virions by optical tweezers reveals substantial heterogeneity in the numbers of envelope glycoproteins, which could have important consequences for infection and transmission.
doi_str_mv 10.1038/nnano.2014.140
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4125448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642613869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-6564c43aefa301d3b629302158f3e320e50bae2412457d89e2830f0d69637c043</originalsourceid><addsrcrecordid>eNqFks9rFDEUxwdRbK1ePUrASy-zze_MXAQpVoVCL3oO2cyb3ZRMMiaTlb37h5t161JF8JSQ9_l-X17ybZrXBK8IZt1VCCbEFcWErwjHT5pzonjXMtaLp6d9p86aFznfYyxoT_nz5oyKqlWqP29-3M2Ls8ajJZl5dmGD4ohcGNzODaUeb8tkAnLTVEIcYHTWQbB7tHOpZMiVRLb4pSRAoy9uQAl2YHxGW1ggxQ0EcMsefXfLFuXq7qGdooeqgYrm6MviYnjZPBurCF49rBfN15sPX64_tbd3Hz9fv79trZBkaaWQ3HJmYDQMk4GtJe0ZpkR0IwNGMQi8NkA5oVyooeuBdgyPeJC9ZMpizi6ad0ffuawnGCyEOrXXc3KTSXsdjdN_VoLb6k3c6WopOO-qweWDQYrfCuRFTy5b8N4EiCVrohRmqiNd_39UcioJ6-QBffsXeh9LCvUlNBGCEM4kUZVaHSmbYs4JxtO9CdaHLOhfWdCHLOiahSp483jaE_778ytwdQRyLYUNpEd9_235E-oiw00</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551143617</pqid></control><display><type>article</type><title>Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Pang, Yuanjie ; Song, Hanna ; Kim, Jin H. ; Hou, Ximiao ; Cheng, Wei</creator><creatorcontrib>Pang, Yuanjie ; Song, Hanna ; Kim, Jin H. ; Hou, Ximiao ; Cheng, Wei</creatorcontrib><description>Optical tweezers use the momentum of photons to trap and manipulate microscopic objects, contact-free, in three dimensions. Although this technique has been widely used in biology and nanotechnology to study molecular motors, biopolymers and nanostructures, its application to study viruses has been very limited, largely due to their small size. Here, using optical tweezers that can simultaneously resolve two-photon fluorescence at the single-molecule level, we show that individual HIV-1 viruses can be optically trapped and manipulated, allowing multi-parameter analysis of single virions in culture fluid under native conditions. We show that individual HIV-1 differs in the numbers of envelope glycoproteins by more than one order of magnitude, which implies substantial heterogeneity of these virions in transmission and infection at the single-particle level. Analogous to flow cytometry for cells, this fluid-based technique may allow ultrasensitive detection, multi-parameter analysis and sorting of viruses and other nanoparticles in biological fluid with single-molecule resolution. Trapping of single HIV virions by optical tweezers reveals substantial heterogeneity in the numbers of envelope glycoproteins, which could have important consequences for infection and transmission.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2014.140</identifier><identifier>PMID: 25038779</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/124 ; 140/125 ; 147/143 ; 631/61/350/59 ; 639/624/400/385 ; 639/925/930/12 ; Biopolymers ; Cell Line ; Chemistry and Materials Science ; Culture ; Equipment Design ; Fluid dynamics ; Fluid flow ; Fluids ; Fluorescence ; Glycoproteins ; Heterogeneity ; HIV Infections - virology ; HIV-1 - chemistry ; HIV-1 - isolation &amp; purification ; Human immunodeficiency virus 1 ; Humans ; Lasers ; Materials Science ; Micromanipulation - instrumentation ; Molecular motors ; Nanoparticles ; Nanotechnology ; Nanotechnology and Microengineering ; Optical Tweezers ; Proteins ; Viral Envelope Proteins - analysis ; Viruses</subject><ispartof>Nature nanotechnology, 2014-08, Vol.9 (8), p.624-630</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Aug 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-6564c43aefa301d3b629302158f3e320e50bae2412457d89e2830f0d69637c043</citedby><cites>FETCH-LOGICAL-c561t-6564c43aefa301d3b629302158f3e320e50bae2412457d89e2830f0d69637c043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2014.140$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2014.140$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25038779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pang, Yuanjie</creatorcontrib><creatorcontrib>Song, Hanna</creatorcontrib><creatorcontrib>Kim, Jin H.</creatorcontrib><creatorcontrib>Hou, Ximiao</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><title>Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Optical tweezers use the momentum of photons to trap and manipulate microscopic objects, contact-free, in three dimensions. Although this technique has been widely used in biology and nanotechnology to study molecular motors, biopolymers and nanostructures, its application to study viruses has been very limited, largely due to their small size. Here, using optical tweezers that can simultaneously resolve two-photon fluorescence at the single-molecule level, we show that individual HIV-1 viruses can be optically trapped and manipulated, allowing multi-parameter analysis of single virions in culture fluid under native conditions. We show that individual HIV-1 differs in the numbers of envelope glycoproteins by more than one order of magnitude, which implies substantial heterogeneity of these virions in transmission and infection at the single-particle level. Analogous to flow cytometry for cells, this fluid-based technique may allow ultrasensitive detection, multi-parameter analysis and sorting of viruses and other nanoparticles in biological fluid with single-molecule resolution. Trapping of single HIV virions by optical tweezers reveals substantial heterogeneity in the numbers of envelope glycoproteins, which could have important consequences for infection and transmission.</description><subject>132/124</subject><subject>140/125</subject><subject>147/143</subject><subject>631/61/350/59</subject><subject>639/624/400/385</subject><subject>639/925/930/12</subject><subject>Biopolymers</subject><subject>Cell Line</subject><subject>Chemistry and Materials Science</subject><subject>Culture</subject><subject>Equipment Design</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Fluorescence</subject><subject>Glycoproteins</subject><subject>Heterogeneity</subject><subject>HIV Infections - virology</subject><subject>HIV-1 - chemistry</subject><subject>HIV-1 - isolation &amp; purification</subject><subject>Human immunodeficiency virus 1</subject><subject>Humans</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Micromanipulation - instrumentation</subject><subject>Molecular motors</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical Tweezers</subject><subject>Proteins</subject><subject>Viral Envelope Proteins - analysis</subject><subject>Viruses</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFks9rFDEUxwdRbK1ePUrASy-zze_MXAQpVoVCL3oO2cyb3ZRMMiaTlb37h5t161JF8JSQ9_l-X17ybZrXBK8IZt1VCCbEFcWErwjHT5pzonjXMtaLp6d9p86aFznfYyxoT_nz5oyKqlWqP29-3M2Ls8ajJZl5dmGD4ohcGNzODaUeb8tkAnLTVEIcYHTWQbB7tHOpZMiVRLb4pSRAoy9uQAl2YHxGW1ggxQ0EcMsefXfLFuXq7qGdooeqgYrm6MviYnjZPBurCF49rBfN15sPX64_tbd3Hz9fv79trZBkaaWQ3HJmYDQMk4GtJe0ZpkR0IwNGMQi8NkA5oVyooeuBdgyPeJC9ZMpizi6ad0ffuawnGCyEOrXXc3KTSXsdjdN_VoLb6k3c6WopOO-qweWDQYrfCuRFTy5b8N4EiCVrohRmqiNd_39UcioJ6-QBffsXeh9LCvUlNBGCEM4kUZVaHSmbYs4JxtO9CdaHLOhfWdCHLOiahSp483jaE_778ytwdQRyLYUNpEd9_235E-oiw00</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Pang, Yuanjie</creator><creator>Song, Hanna</creator><creator>Kim, Jin H.</creator><creator>Hou, Ximiao</creator><creator>Cheng, Wei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution</title><author>Pang, Yuanjie ; Song, Hanna ; Kim, Jin H. ; Hou, Ximiao ; Cheng, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-6564c43aefa301d3b629302158f3e320e50bae2412457d89e2830f0d69637c043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>132/124</topic><topic>140/125</topic><topic>147/143</topic><topic>631/61/350/59</topic><topic>639/624/400/385</topic><topic>639/925/930/12</topic><topic>Biopolymers</topic><topic>Cell Line</topic><topic>Chemistry and Materials Science</topic><topic>Culture</topic><topic>Equipment Design</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Fluorescence</topic><topic>Glycoproteins</topic><topic>Heterogeneity</topic><topic>HIV Infections - virology</topic><topic>HIV-1 - chemistry</topic><topic>HIV-1 - isolation &amp; purification</topic><topic>Human immunodeficiency virus 1</topic><topic>Humans</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Micromanipulation - instrumentation</topic><topic>Molecular motors</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical Tweezers</topic><topic>Proteins</topic><topic>Viral Envelope Proteins - analysis</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pang, Yuanjie</creatorcontrib><creatorcontrib>Song, Hanna</creatorcontrib><creatorcontrib>Kim, Jin H.</creatorcontrib><creatorcontrib>Hou, Ximiao</creatorcontrib><creatorcontrib>Cheng, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pang, Yuanjie</au><au>Song, Hanna</au><au>Kim, Jin H.</au><au>Hou, Ximiao</au><au>Cheng, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>9</volume><issue>8</issue><spage>624</spage><epage>630</epage><pages>624-630</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Optical tweezers use the momentum of photons to trap and manipulate microscopic objects, contact-free, in three dimensions. Although this technique has been widely used in biology and nanotechnology to study molecular motors, biopolymers and nanostructures, its application to study viruses has been very limited, largely due to their small size. Here, using optical tweezers that can simultaneously resolve two-photon fluorescence at the single-molecule level, we show that individual HIV-1 viruses can be optically trapped and manipulated, allowing multi-parameter analysis of single virions in culture fluid under native conditions. We show that individual HIV-1 differs in the numbers of envelope glycoproteins by more than one order of magnitude, which implies substantial heterogeneity of these virions in transmission and infection at the single-particle level. Analogous to flow cytometry for cells, this fluid-based technique may allow ultrasensitive detection, multi-parameter analysis and sorting of viruses and other nanoparticles in biological fluid with single-molecule resolution. Trapping of single HIV virions by optical tweezers reveals substantial heterogeneity in the numbers of envelope glycoproteins, which could have important consequences for infection and transmission.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25038779</pmid><doi>10.1038/nnano.2014.140</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2014-08, Vol.9 (8), p.624-630
issn 1748-3387
1748-3395
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4125448
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 132/124
140/125
147/143
631/61/350/59
639/624/400/385
639/925/930/12
Biopolymers
Cell Line
Chemistry and Materials Science
Culture
Equipment Design
Fluid dynamics
Fluid flow
Fluids
Fluorescence
Glycoproteins
Heterogeneity
HIV Infections - virology
HIV-1 - chemistry
HIV-1 - isolation & purification
Human immunodeficiency virus 1
Humans
Lasers
Materials Science
Micromanipulation - instrumentation
Molecular motors
Nanoparticles
Nanotechnology
Nanotechnology and Microengineering
Optical Tweezers
Proteins
Viral Envelope Proteins - analysis
Viruses
title Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20trapping%20of%20individual%20human%20immunodeficiency%20viruses%20in%20culture%20fluid%20reveals%20heterogeneity%20with%20single-molecule%20resolution&rft.jtitle=Nature%20nanotechnology&rft.au=Pang,%20Yuanjie&rft.date=2014-08-01&rft.volume=9&rft.issue=8&rft.spage=624&rft.epage=630&rft.pages=624-630&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2014.140&rft_dat=%3Cproquest_pubme%3E1642613869%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551143617&rft_id=info:pmid/25038779&rfr_iscdi=true