IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction

Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000). The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Bioinformatics 2014, Vol.2014 (2014), p.r1-7
Hauptverfasser: Pokkuluri, Kiran Sree, Nedunuri, S. S. S. N. Usha Devi, Inampudi, Ramesh Babu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 2014
container_start_page r1
container_title Advances in Bioinformatics
container_volume 2014
creator Pokkuluri, Kiran Sree
Nedunuri, S. S. S. N. Usha Devi
Inampudi, Ramesh Babu
description Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000). The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata) and MCC (modified clonal classifier) to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992) datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006) dataset and nonpromoters from EID (Saxonov et al., 2000) and UTRdb (Pesole et al., 2002) datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.
doi_str_mv 10.1155/2014/261362
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4123571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A414694030</galeid><airiti_id>16878027_201412_201503050037_201503050037_r1_7</airiti_id><sourcerecordid>A414694030</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4682-62cf118a31895ba609363c91760090be2a6bdf94d7b8c2bbd101f2bf7e03d87b3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEoqWwYg2yxAaB0vovTsICKYoKHakDLGBtObE9dZXYU9uh4iF4Z5xJGToICXlx7evvHsnHJ8ueI3iKUFGcYYjoGWaIMPwgO0asKvMKkuLhfo_Lo-xJCNcQMlwj8jg7wgUiuKL1cfZz9SlfN22Tr9v2HVjZqDZeRCXBehqi2Q4KNDF60UfnQauGYRqEB80U3SiiALcmXoG1k0abNNIOzoohFRHC3PFAp6mLaRQWfPEuKmNBm2C7AcLKuTWmpk8bJU0fjbNPs0daDEE9u6sn2bcP51_bi_zy88dV21zmgrIK5wz3GqFKEFTVRScYrAkjfY1KBmENO4UF66SuqSy7qsddJxFEGne6VJDIquzISfZ-0d1O3ahkr2x648C33ozC_-BOGH54Y80V37jvnCJMihIlgdd3At7dTCpEPprQJ3-EVW4KPP0LpSVBbEZf_YVeu8kno3ZU-gXCCviH2ohBcWO1m12fRXlDEWU1hWSmTv9BpSXVaHpnlTapfzDwdhnovQvBK71_I4J8Tg-f08OX9CT65X1b9uzvuCTgzQJcGSvFrfmP2osFVglRWuxhWlRkJ3a-3AvjTTT3bEmxnVO7U0N4LskhWEBIysODR7wkvwA-O-eY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552843650</pqid></control><display><type>article</type><title>IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Pokkuluri, Kiran Sree ; Nedunuri, S. S. S. N. Usha Devi ; Inampudi, Ramesh Babu</creator><contributor>Dasgupta, Bhaskar</contributor><creatorcontrib>Pokkuluri, Kiran Sree ; Nedunuri, S. S. S. N. Usha Devi ; Inampudi, Ramesh Babu ; Dasgupta, Bhaskar</creatorcontrib><description>Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000). The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata) and MCC (modified clonal classifier) to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992) datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006) dataset and nonpromoters from EID (Saxonov et al., 2000) and UTRdb (Pesole et al., 2002) datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.</description><identifier>ISSN: 1687-8027</identifier><identifier>EISSN: 1687-8035</identifier><identifier>DOI: 10.1155/2014/261362</identifier><identifier>PMID: 25132849</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>DNA sequencing ; Nucleotide sequencing ; Promoters (Genetics) ; Robots</subject><ispartof>Advances in Bioinformatics, 2014, Vol.2014 (2014), p.r1-7</ispartof><rights>Copyright © 2014 Kiran Sree Pokkuluri et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 Kiran Sree Pokkuluri et al. Kiran Sree Pokkuluri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Kiran Sree Pokkuluri et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a4682-62cf118a31895ba609363c91760090be2a6bdf94d7b8c2bbd101f2bf7e03d87b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123571/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4123571/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25132849$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dasgupta, Bhaskar</contributor><creatorcontrib>Pokkuluri, Kiran Sree</creatorcontrib><creatorcontrib>Nedunuri, S. S. S. N. Usha Devi</creatorcontrib><creatorcontrib>Inampudi, Ramesh Babu</creatorcontrib><title>IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction</title><title>Advances in Bioinformatics</title><addtitle>Adv Bioinformatics</addtitle><description>Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000). The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata) and MCC (modified clonal classifier) to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992) datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006) dataset and nonpromoters from EID (Saxonov et al., 2000) and UTRdb (Pesole et al., 2002) datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.</description><subject>DNA sequencing</subject><subject>Nucleotide sequencing</subject><subject>Promoters (Genetics)</subject><subject>Robots</subject><issn>1687-8027</issn><issn>1687-8035</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFks1u1DAUhSMEoqWwYg2yxAaB0vovTsICKYoKHakDLGBtObE9dZXYU9uh4iF4Z5xJGToICXlx7evvHsnHJ8ueI3iKUFGcYYjoGWaIMPwgO0asKvMKkuLhfo_Lo-xJCNcQMlwj8jg7wgUiuKL1cfZz9SlfN22Tr9v2HVjZqDZeRCXBehqi2Q4KNDF60UfnQauGYRqEB80U3SiiALcmXoG1k0abNNIOzoohFRHC3PFAp6mLaRQWfPEuKmNBm2C7AcLKuTWmpk8bJU0fjbNPs0daDEE9u6sn2bcP51_bi_zy88dV21zmgrIK5wz3GqFKEFTVRScYrAkjfY1KBmENO4UF66SuqSy7qsddJxFEGne6VJDIquzISfZ-0d1O3ahkr2x648C33ozC_-BOGH54Y80V37jvnCJMihIlgdd3At7dTCpEPprQJ3-EVW4KPP0LpSVBbEZf_YVeu8kno3ZU-gXCCviH2ohBcWO1m12fRXlDEWU1hWSmTv9BpSXVaHpnlTapfzDwdhnovQvBK71_I4J8Tg-f08OX9CT65X1b9uzvuCTgzQJcGSvFrfmP2osFVglRWuxhWlRkJ3a-3AvjTTT3bEmxnVO7U0N4LskhWEBIysODR7wkvwA-O-eY</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Pokkuluri, Kiran Sree</creator><creator>Nedunuri, S. S. S. N. Usha Devi</creator><creator>Inampudi, Ramesh Babu</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>LK8</scope><scope>M0N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2014</creationdate><title>IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction</title><author>Pokkuluri, Kiran Sree ; Nedunuri, S. S. S. N. Usha Devi ; Inampudi, Ramesh Babu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4682-62cf118a31895ba609363c91760090be2a6bdf94d7b8c2bbd101f2bf7e03d87b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>DNA sequencing</topic><topic>Nucleotide sequencing</topic><topic>Promoters (Genetics)</topic><topic>Robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pokkuluri, Kiran Sree</creatorcontrib><creatorcontrib>Nedunuri, S. S. S. N. Usha Devi</creatorcontrib><creatorcontrib>Inampudi, Ramesh Babu</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advances in Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pokkuluri, Kiran Sree</au><au>Nedunuri, S. S. S. N. Usha Devi</au><au>Inampudi, Ramesh Babu</au><au>Dasgupta, Bhaskar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction</atitle><jtitle>Advances in Bioinformatics</jtitle><addtitle>Adv Bioinformatics</addtitle><date>2014</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>r1</spage><epage>7</epage><pages>r1-7</pages><issn>1687-8027</issn><eissn>1687-8035</eissn><abstract>Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000). The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata) and MCC (modified clonal classifier) to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992) datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006) dataset and nonpromoters from EID (Saxonov et al., 2000) and UTRdb (Pesole et al., 2002) datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><pmid>25132849</pmid><doi>10.1155/2014/261362</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8027
ispartof Advances in Bioinformatics, 2014, Vol.2014 (2014), p.r1-7
issn 1687-8027
1687-8035
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4123571
source PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects DNA sequencing
Nucleotide sequencing
Promoters (Genetics)
Robots
title IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IN-MACA-MCC:%20Integrated%20Multiple%20Attractor%20Cellular%20Automata%20with%20Modified%20Clonal%20Classifier%20for%20Human%20Protein%20Coding%20and%20Promoter%20Prediction&rft.jtitle=Advances%20in%20Bioinformatics&rft.au=Pokkuluri,%20Kiran%20Sree&rft.date=2014&rft.volume=2014&rft.issue=2014&rft.spage=r1&rft.epage=7&rft.pages=r1-7&rft.issn=1687-8027&rft.eissn=1687-8035&rft_id=info:doi/10.1155/2014/261362&rft_dat=%3Cgale_pubme%3EA414694030%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552843650&rft_id=info:pmid/25132849&rft_galeid=A414694030&rft_airiti_id=16878027_201412_201503050037_201503050037_r1_7&rfr_iscdi=true