Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Heart and circulatory physiology 2014-08, Vol.307 (3), p.H346-H352
Hauptverfasser: Park, Song-Young, Gifford, Jayson R, Andtbacka, Robert H I, Trinity, Joel D, Hyngstrom, John R, Garten, Ryan S, Diakos, Nikolaos A, Ives, Stephen J, Dela, Flemming, Larsen, Steen, Drakos, Stavros, Richardson, Russell S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page H352
container_issue 3
container_start_page H346
container_title American journal of physiology. Heart and circulatory physiology
container_volume 307
creator Park, Song-Young
Gifford, Jayson R
Andtbacka, Robert H I
Trinity, Joel D
Hyngstrom, John R
Garten, Ryan S
Diakos, Nikolaos A
Ives, Stephen J
Dela, Flemming
Larsen, Steen
Drakos, Stavros
Richardson, Russell S
description Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P < 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g(-1)·min(-1), P < 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P < 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.
doi_str_mv 10.1152/ajpheart.00227.2014
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4121645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3398427341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-92ea236bf1fcba0b2547a3b59d497ad45c2768595a96d620f60045ba88c1130f3</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoO4uOPqLxAk4MXD9my-e-JBkUHdhQUveg7V6WonY7ozm6QF_7097geupzrU875U8RDyirM151pcwP6wQ8h1zZgQ7Vowrp6Q1bIRDdfSPiUrJo1sDJf6lDwvZc8Y062Rz8ipUJYZy-WK-C3kPoA_p-UnRqwQzylMPS1jSnVHx7n4iHQMNfldmvocINKM5RAy1JCmdxQyUojxEUJ9RqjYU7yZIX54QU4GiAVf3s0z8v3zp2_by-b665er7cfrxitra2MFgpCmG_jgO2Cd0KoF2WnbK9tCr7QXrdloq8Ga3gg2GMaU7mCz8ZxLNsgz8v629zB3I_Yep5ohukMOI-TfLkFwjzdT2Lkf6ZdTXHCj9FLw9q4gp5sZS3VjKB5jhAnTXBzXmrPlLGkX9M1_6D7NeVreO1JCSW42fKHkLeVzKiXj8HAMZ-4o0d1LdH8luqPEJfX63z8eMvfW5B9N7JtW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552431681</pqid></control><display><type>article</type><title>Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Park, Song-Young ; Gifford, Jayson R ; Andtbacka, Robert H I ; Trinity, Joel D ; Hyngstrom, John R ; Garten, Ryan S ; Diakos, Nikolaos A ; Ives, Stephen J ; Dela, Flemming ; Larsen, Steen ; Drakos, Stavros ; Richardson, Russell S</creator><creatorcontrib>Park, Song-Young ; Gifford, Jayson R ; Andtbacka, Robert H I ; Trinity, Joel D ; Hyngstrom, John R ; Garten, Ryan S ; Diakos, Nikolaos A ; Ives, Stephen J ; Dela, Flemming ; Larsen, Steen ; Drakos, Stavros ; Richardson, Russell S</creatorcontrib><description>Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P &lt; 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g(-1)·min(-1), P &lt; 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P &lt; 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.</description><identifier>ISSN: 0363-6135</identifier><identifier>EISSN: 1522-1539</identifier><identifier>DOI: 10.1152/ajpheart.00227.2014</identifier><identifier>PMID: 24906913</identifier><identifier>CODEN: AJPPDI</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Cardiovascular system ; Cell Respiration ; Citrate (si)-Synthase - metabolism ; Electron Transport Complex I - metabolism ; Electron Transport Complex II - metabolism ; Energetics and Metabolism ; Energy Metabolism ; Female ; Humans ; Male ; Middle Aged ; Mitochondria ; Mitochondria, Heart - metabolism ; Mitochondria, Muscle - metabolism ; Muscle, Skeletal - metabolism ; Muscle, Smooth - metabolism ; Muscular system ; Oxidative Phosphorylation ; Phenotype ; Phosphorylation ; Respiration ; Skeletal system</subject><ispartof>American journal of physiology. Heart and circulatory physiology, 2014-08, Vol.307 (3), p.H346-H352</ispartof><rights>Copyright American Physiological Society Aug 1, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-92ea236bf1fcba0b2547a3b59d497ad45c2768595a96d620f60045ba88c1130f3</citedby><cites>FETCH-LOGICAL-c499t-92ea236bf1fcba0b2547a3b59d497ad45c2768595a96d620f60045ba88c1130f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24906913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Song-Young</creatorcontrib><creatorcontrib>Gifford, Jayson R</creatorcontrib><creatorcontrib>Andtbacka, Robert H I</creatorcontrib><creatorcontrib>Trinity, Joel D</creatorcontrib><creatorcontrib>Hyngstrom, John R</creatorcontrib><creatorcontrib>Garten, Ryan S</creatorcontrib><creatorcontrib>Diakos, Nikolaos A</creatorcontrib><creatorcontrib>Ives, Stephen J</creatorcontrib><creatorcontrib>Dela, Flemming</creatorcontrib><creatorcontrib>Larsen, Steen</creatorcontrib><creatorcontrib>Drakos, Stavros</creatorcontrib><creatorcontrib>Richardson, Russell S</creatorcontrib><title>Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?</title><title>American journal of physiology. Heart and circulatory physiology</title><addtitle>Am J Physiol Heart Circ Physiol</addtitle><description>Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P &lt; 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g(-1)·min(-1), P &lt; 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P &lt; 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.</description><subject>Cardiovascular system</subject><subject>Cell Respiration</subject><subject>Citrate (si)-Synthase - metabolism</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Electron Transport Complex II - metabolism</subject><subject>Energetics and Metabolism</subject><subject>Energy Metabolism</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Smooth - metabolism</subject><subject>Muscular system</subject><subject>Oxidative Phosphorylation</subject><subject>Phenotype</subject><subject>Phosphorylation</subject><subject>Respiration</subject><subject>Skeletal system</subject><issn>0363-6135</issn><issn>1522-1539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU2LFDEQhoO4uOPqLxAk4MXD9my-e-JBkUHdhQUveg7V6WonY7ozm6QF_7097geupzrU875U8RDyirM151pcwP6wQ8h1zZgQ7Vowrp6Q1bIRDdfSPiUrJo1sDJf6lDwvZc8Y062Rz8ipUJYZy-WK-C3kPoA_p-UnRqwQzylMPS1jSnVHx7n4iHQMNfldmvocINKM5RAy1JCmdxQyUojxEUJ9RqjYU7yZIX54QU4GiAVf3s0z8v3zp2_by-b665er7cfrxitra2MFgpCmG_jgO2Cd0KoF2WnbK9tCr7QXrdloq8Ga3gg2GMaU7mCz8ZxLNsgz8v629zB3I_Yep5ohukMOI-TfLkFwjzdT2Lkf6ZdTXHCj9FLw9q4gp5sZS3VjKB5jhAnTXBzXmrPlLGkX9M1_6D7NeVreO1JCSW42fKHkLeVzKiXj8HAMZ-4o0d1LdH8luqPEJfX63z8eMvfW5B9N7JtW</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Park, Song-Young</creator><creator>Gifford, Jayson R</creator><creator>Andtbacka, Robert H I</creator><creator>Trinity, Joel D</creator><creator>Hyngstrom, John R</creator><creator>Garten, Ryan S</creator><creator>Diakos, Nikolaos A</creator><creator>Ives, Stephen J</creator><creator>Dela, Flemming</creator><creator>Larsen, Steen</creator><creator>Drakos, Stavros</creator><creator>Richardson, Russell S</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?</title><author>Park, Song-Young ; Gifford, Jayson R ; Andtbacka, Robert H I ; Trinity, Joel D ; Hyngstrom, John R ; Garten, Ryan S ; Diakos, Nikolaos A ; Ives, Stephen J ; Dela, Flemming ; Larsen, Steen ; Drakos, Stavros ; Richardson, Russell S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-92ea236bf1fcba0b2547a3b59d497ad45c2768595a96d620f60045ba88c1130f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cardiovascular system</topic><topic>Cell Respiration</topic><topic>Citrate (si)-Synthase - metabolism</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Electron Transport Complex II - metabolism</topic><topic>Energetics and Metabolism</topic><topic>Energy Metabolism</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Smooth - metabolism</topic><topic>Muscular system</topic><topic>Oxidative Phosphorylation</topic><topic>Phenotype</topic><topic>Phosphorylation</topic><topic>Respiration</topic><topic>Skeletal system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Song-Young</creatorcontrib><creatorcontrib>Gifford, Jayson R</creatorcontrib><creatorcontrib>Andtbacka, Robert H I</creatorcontrib><creatorcontrib>Trinity, Joel D</creatorcontrib><creatorcontrib>Hyngstrom, John R</creatorcontrib><creatorcontrib>Garten, Ryan S</creatorcontrib><creatorcontrib>Diakos, Nikolaos A</creatorcontrib><creatorcontrib>Ives, Stephen J</creatorcontrib><creatorcontrib>Dela, Flemming</creatorcontrib><creatorcontrib>Larsen, Steen</creatorcontrib><creatorcontrib>Drakos, Stavros</creatorcontrib><creatorcontrib>Richardson, Russell S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Song-Young</au><au>Gifford, Jayson R</au><au>Andtbacka, Robert H I</au><au>Trinity, Joel D</au><au>Hyngstrom, John R</au><au>Garten, Ryan S</au><au>Diakos, Nikolaos A</au><au>Ives, Stephen J</au><au>Dela, Flemming</au><au>Larsen, Steen</au><au>Drakos, Stavros</au><au>Richardson, Russell S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?</atitle><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle><addtitle>Am J Physiol Heart Circ Physiol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>307</volume><issue>3</issue><spage>H346</spage><epage>H352</epage><pages>H346-H352</pages><issn>0363-6135</issn><eissn>1522-1539</eissn><coden>AJPPDI</coden><abstract>Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P &lt; 0.05, respectively). Citrate synthase (CS) activity, an index of mitochondrial density, also fell progressively from cardiac to skeletal to smooth muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g(-1)·min(-1), P &lt; 0.05, respectively). Thus, when respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P &lt; 0.05, respectively). Thus, although oxidative phosphorylation capacity per mitochondrial content in cardiac, skeletal, and smooth muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>24906913</pmid><doi>10.1152/ajpheart.00227.2014</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-6135
ispartof American journal of physiology. Heart and circulatory physiology, 2014-08, Vol.307 (3), p.H346-H352
issn 0363-6135
1522-1539
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4121645
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Cardiovascular system
Cell Respiration
Citrate (si)-Synthase - metabolism
Electron Transport Complex I - metabolism
Electron Transport Complex II - metabolism
Energetics and Metabolism
Energy Metabolism
Female
Humans
Male
Middle Aged
Mitochondria
Mitochondria, Heart - metabolism
Mitochondria, Muscle - metabolism
Muscle, Skeletal - metabolism
Muscle, Smooth - metabolism
Muscular system
Oxidative Phosphorylation
Phenotype
Phosphorylation
Respiration
Skeletal system
title Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiac,%20skeletal,%20and%20smooth%20muscle%20mitochondrial%20respiration:%20are%20all%20mitochondria%20created%20equal?&rft.jtitle=American%20journal%20of%20physiology.%20Heart%20and%20circulatory%20physiology&rft.au=Park,%20Song-Young&rft.date=2014-08-01&rft.volume=307&rft.issue=3&rft.spage=H346&rft.epage=H352&rft.pages=H346-H352&rft.issn=0363-6135&rft.eissn=1522-1539&rft.coden=AJPPDI&rft_id=info:doi/10.1152/ajpheart.00227.2014&rft_dat=%3Cproquest_pubme%3E3398427341%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552431681&rft_id=info:pmid/24906913&rfr_iscdi=true