Targeted transcranial direct current stimulation for rehabilitation after stroke

Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2013-07, Vol.75, p.12-19
Hauptverfasser: Dmochowski, Jacek P., Datta, Abhishek, Huang, Yu, Richardson, Jessica D., Bikson, Marom, Fridriksson, Julius, Parra, Lucas C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue
container_start_page 12
container_title NeuroImage (Orlando, Fla.)
container_volume 75
creator Dmochowski, Jacek P.
Datta, Abhishek
Huang, Yu
Richardson, Jessica D.
Bikson, Marom
Fridriksson, Julius
Parra, Lucas C.
description Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation. •An optimization algorithm which maximizes current flow at the target is derived.•Electric field intensities at the target are increased by 63%.•Optimized electric field strength is robust to perturbations of the target location.
doi_str_mv 10.1016/j.neuroimage.2013.02.049
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4120279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811913001833</els_id><sourcerecordid>1367881777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c697t-ea874c3711f13c4db9b1f0b63de29c8ed6d0c77a27e9f4df7070c0240fc262743</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxSMEon_gK6BICIlLwoyd2PEFiVYUkCrBoZwtx5lsvWTjYjuV-PZ4laUFDpSLbY1_8zR684qiRKgRULzZ1jMtwbud2VDNAHkNrIZGPSqOEVRbqVayx_t3y6sOUR0VJzFuAUBh0z0tjhhvJFdcHBdfrkzYUKKhTMHM0ebDmakcXCCbSruEQHMqY3K7ZTLJ-bkcfSgDXZveTS6tJTMmChkK_hs9K56MZor0_HCfFl8v3l-df6wuP3_4dP7usrJCyVSR6WRjuUQckdtm6FWPI_SCD8SU7WgQA1gpDZOkxmYYJUiwwBoYLRNMNvy0eLvq3iz9jgabxwxm0jchmxJ-aG-c_vNndtd64291gwyYVFng9UEg-O8LxaR3LlqaJjOTX6JGIVGwrm2bh9EWQAqG6j9UuZBdh1LKjL78C936JczZNM2gxZYphf-ksM1bzDNyzFS3Ujb4GAONd0Yg6H1k9FbfR0bvI6OB6RyZ3PridyPvGn9lJAOvDoCJ1kxjjoh18Z6TrBMKu8ydrRzltd86CjpaR7OlNUx68O7haX4Cci3kow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547316231</pqid></control><display><type>article</type><title>Targeted transcranial direct current stimulation for rehabilitation after stroke</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Dmochowski, Jacek P. ; Datta, Abhishek ; Huang, Yu ; Richardson, Jessica D. ; Bikson, Marom ; Fridriksson, Julius ; Parra, Lucas C.</creator><creatorcontrib>Dmochowski, Jacek P. ; Datta, Abhishek ; Huang, Yu ; Richardson, Jessica D. ; Bikson, Marom ; Fridriksson, Julius ; Parra, Lucas C.</creatorcontrib><description>Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation. •An optimization algorithm which maximizes current flow at the target is derived.•Electric field intensities at the target are increased by 63%.•Optimized electric field strength is robust to perturbations of the target location.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2013.02.049</identifier><identifier>PMID: 23473936</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algorithms ; Aphasia ; Biological and medical sciences ; Brain stimulation ; Cerebral Cortex - physiopathology ; Direct current ; Electric fields ; Electrical stimulation of the brain ; Electrodes ; ESB ; Functional magnetic resonance imaging ; Fundamental and applied biological sciences. Psychology ; Humans ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical sciences ; Neural networks ; Neurology ; Neuromodulation ; NMR ; Nuclear magnetic resonance ; Optimization algorithms ; Optimization techniques ; Pilot Projects ; Position (location) ; Rehabilitation ; Stimulation ; Stroke ; Stroke - physiopathology ; Stroke Rehabilitation ; Strokes ; Transcranial direct current stimulation ; Transcranial Magnetic Stimulation - methods ; Vascular diseases and vascular malformations of the nervous system ; Vertebrates: nervous system and sense organs</subject><ispartof>NeuroImage (Orlando, Fla.), 2013-07, Vol.75, p.12-19</ispartof><rights>2013 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 15, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c697t-ea874c3711f13c4db9b1f0b63de29c8ed6d0c77a27e9f4df7070c0240fc262743</citedby><cites>FETCH-LOGICAL-c697t-ea874c3711f13c4db9b1f0b63de29c8ed6d0c77a27e9f4df7070c0240fc262743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1547316231?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27286918$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23473936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dmochowski, Jacek P.</creatorcontrib><creatorcontrib>Datta, Abhishek</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Richardson, Jessica D.</creatorcontrib><creatorcontrib>Bikson, Marom</creatorcontrib><creatorcontrib>Fridriksson, Julius</creatorcontrib><creatorcontrib>Parra, Lucas C.</creatorcontrib><title>Targeted transcranial direct current stimulation for rehabilitation after stroke</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation. •An optimization algorithm which maximizes current flow at the target is derived.•Electric field intensities at the target are increased by 63%.•Optimized electric field strength is robust to perturbations of the target location.</description><subject>Algorithms</subject><subject>Aphasia</subject><subject>Biological and medical sciences</subject><subject>Brain stimulation</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Direct current</subject><subject>Electric fields</subject><subject>Electrical stimulation of the brain</subject><subject>Electrodes</subject><subject>ESB</subject><subject>Functional magnetic resonance imaging</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical sciences</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Neuromodulation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Pilot Projects</subject><subject>Position (location)</subject><subject>Rehabilitation</subject><subject>Stimulation</subject><subject>Stroke</subject><subject>Stroke - physiopathology</subject><subject>Stroke Rehabilitation</subject><subject>Strokes</subject><subject>Transcranial direct current stimulation</subject><subject>Transcranial Magnetic Stimulation - methods</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk9v1DAQxSMEon_gK6BICIlLwoyd2PEFiVYUkCrBoZwtx5lsvWTjYjuV-PZ4laUFDpSLbY1_8zR684qiRKgRULzZ1jMtwbud2VDNAHkNrIZGPSqOEVRbqVayx_t3y6sOUR0VJzFuAUBh0z0tjhhvJFdcHBdfrkzYUKKhTMHM0ebDmakcXCCbSruEQHMqY3K7ZTLJ-bkcfSgDXZveTS6tJTMmChkK_hs9K56MZor0_HCfFl8v3l-df6wuP3_4dP7usrJCyVSR6WRjuUQckdtm6FWPI_SCD8SU7WgQA1gpDZOkxmYYJUiwwBoYLRNMNvy0eLvq3iz9jgabxwxm0jchmxJ-aG-c_vNndtd64291gwyYVFng9UEg-O8LxaR3LlqaJjOTX6JGIVGwrm2bh9EWQAqG6j9UuZBdh1LKjL78C936JczZNM2gxZYphf-ksM1bzDNyzFS3Ujb4GAONd0Yg6H1k9FbfR0bvI6OB6RyZ3PridyPvGn9lJAOvDoCJ1kxjjoh18Z6TrBMKu8ydrRzltd86CjpaR7OlNUx68O7haX4Cci3kow</recordid><startdate>20130715</startdate><enddate>20130715</enddate><creator>Dmochowski, Jacek P.</creator><creator>Datta, Abhishek</creator><creator>Huang, Yu</creator><creator>Richardson, Jessica D.</creator><creator>Bikson, Marom</creator><creator>Fridriksson, Julius</creator><creator>Parra, Lucas C.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20130715</creationdate><title>Targeted transcranial direct current stimulation for rehabilitation after stroke</title><author>Dmochowski, Jacek P. ; Datta, Abhishek ; Huang, Yu ; Richardson, Jessica D. ; Bikson, Marom ; Fridriksson, Julius ; Parra, Lucas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c697t-ea874c3711f13c4db9b1f0b63de29c8ed6d0c77a27e9f4df7070c0240fc262743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Aphasia</topic><topic>Biological and medical sciences</topic><topic>Brain stimulation</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Direct current</topic><topic>Electric fields</topic><topic>Electrical stimulation of the brain</topic><topic>Electrodes</topic><topic>ESB</topic><topic>Functional magnetic resonance imaging</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical sciences</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Neuromodulation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Pilot Projects</topic><topic>Position (location)</topic><topic>Rehabilitation</topic><topic>Stimulation</topic><topic>Stroke</topic><topic>Stroke - physiopathology</topic><topic>Stroke Rehabilitation</topic><topic>Strokes</topic><topic>Transcranial direct current stimulation</topic><topic>Transcranial Magnetic Stimulation - methods</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dmochowski, Jacek P.</creatorcontrib><creatorcontrib>Datta, Abhishek</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Richardson, Jessica D.</creatorcontrib><creatorcontrib>Bikson, Marom</creatorcontrib><creatorcontrib>Fridriksson, Julius</creatorcontrib><creatorcontrib>Parra, Lucas C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dmochowski, Jacek P.</au><au>Datta, Abhishek</au><au>Huang, Yu</au><au>Richardson, Jessica D.</au><au>Bikson, Marom</au><au>Fridriksson, Julius</au><au>Parra, Lucas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted transcranial direct current stimulation for rehabilitation after stroke</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2013-07-15</date><risdate>2013</risdate><volume>75</volume><spage>12</spage><epage>19</epage><pages>12-19</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation. •An optimization algorithm which maximizes current flow at the target is derived.•Electric field intensities at the target are increased by 63%.•Optimized electric field strength is robust to perturbations of the target location.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>23473936</pmid><doi>10.1016/j.neuroimage.2013.02.049</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2013-07, Vol.75, p.12-19
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4120279
source MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Algorithms
Aphasia
Biological and medical sciences
Brain stimulation
Cerebral Cortex - physiopathology
Direct current
Electric fields
Electrical stimulation of the brain
Electrodes
ESB
Functional magnetic resonance imaging
Fundamental and applied biological sciences. Psychology
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical sciences
Neural networks
Neurology
Neuromodulation
NMR
Nuclear magnetic resonance
Optimization algorithms
Optimization techniques
Pilot Projects
Position (location)
Rehabilitation
Stimulation
Stroke
Stroke - physiopathology
Stroke Rehabilitation
Strokes
Transcranial direct current stimulation
Transcranial Magnetic Stimulation - methods
Vascular diseases and vascular malformations of the nervous system
Vertebrates: nervous system and sense organs
title Targeted transcranial direct current stimulation for rehabilitation after stroke
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20transcranial%20direct%20current%20stimulation%20for%20rehabilitation%20after%20stroke&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Dmochowski,%20Jacek%20P.&rft.date=2013-07-15&rft.volume=75&rft.spage=12&rft.epage=19&rft.pages=12-19&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2013.02.049&rft_dat=%3Cproquest_pubme%3E1367881777%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547316231&rft_id=info:pmid/23473936&rft_els_id=S1053811913001833&rfr_iscdi=true