Targeted transcranial direct current stimulation for rehabilitation after stroke
Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2013-07, Vol.75, p.12-19 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | |
container_start_page | 12 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 75 |
creator | Dmochowski, Jacek P. Datta, Abhishek Huang, Yu Richardson, Jessica D. Bikson, Marom Fridriksson, Julius Parra, Lucas C. |
description | Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation.
•An optimization algorithm which maximizes current flow at the target is derived.•Electric field intensities at the target are increased by 63%.•Optimized electric field strength is robust to perturbations of the target location. |
doi_str_mv | 10.1016/j.neuroimage.2013.02.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4120279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811913001833</els_id><sourcerecordid>1367881777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c697t-ea874c3711f13c4db9b1f0b63de29c8ed6d0c77a27e9f4df7070c0240fc262743</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxSMEon_gK6BICIlLwoyd2PEFiVYUkCrBoZwtx5lsvWTjYjuV-PZ4laUFDpSLbY1_8zR684qiRKgRULzZ1jMtwbud2VDNAHkNrIZGPSqOEVRbqVayx_t3y6sOUR0VJzFuAUBh0z0tjhhvJFdcHBdfrkzYUKKhTMHM0ebDmakcXCCbSruEQHMqY3K7ZTLJ-bkcfSgDXZveTS6tJTMmChkK_hs9K56MZor0_HCfFl8v3l-df6wuP3_4dP7usrJCyVSR6WRjuUQckdtm6FWPI_SCD8SU7WgQA1gpDZOkxmYYJUiwwBoYLRNMNvy0eLvq3iz9jgabxwxm0jchmxJ-aG-c_vNndtd64291gwyYVFng9UEg-O8LxaR3LlqaJjOTX6JGIVGwrm2bh9EWQAqG6j9UuZBdh1LKjL78C936JczZNM2gxZYphf-ksM1bzDNyzFS3Ujb4GAONd0Yg6H1k9FbfR0bvI6OB6RyZ3PridyPvGn9lJAOvDoCJ1kxjjoh18Z6TrBMKu8ydrRzltd86CjpaR7OlNUx68O7haX4Cci3kow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547316231</pqid></control><display><type>article</type><title>Targeted transcranial direct current stimulation for rehabilitation after stroke</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Dmochowski, Jacek P. ; Datta, Abhishek ; Huang, Yu ; Richardson, Jessica D. ; Bikson, Marom ; Fridriksson, Julius ; Parra, Lucas C.</creator><creatorcontrib>Dmochowski, Jacek P. ; Datta, Abhishek ; Huang, Yu ; Richardson, Jessica D. ; Bikson, Marom ; Fridriksson, Julius ; Parra, Lucas C.</creatorcontrib><description>Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation.
•An optimization algorithm which maximizes current flow at the target is derived.•Electric field intensities at the target are increased by 63%.•Optimized electric field strength is robust to perturbations of the target location.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2013.02.049</identifier><identifier>PMID: 23473936</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algorithms ; Aphasia ; Biological and medical sciences ; Brain stimulation ; Cerebral Cortex - physiopathology ; Direct current ; Electric fields ; Electrical stimulation of the brain ; Electrodes ; ESB ; Functional magnetic resonance imaging ; Fundamental and applied biological sciences. Psychology ; Humans ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical sciences ; Neural networks ; Neurology ; Neuromodulation ; NMR ; Nuclear magnetic resonance ; Optimization algorithms ; Optimization techniques ; Pilot Projects ; Position (location) ; Rehabilitation ; Stimulation ; Stroke ; Stroke - physiopathology ; Stroke Rehabilitation ; Strokes ; Transcranial direct current stimulation ; Transcranial Magnetic Stimulation - methods ; Vascular diseases and vascular malformations of the nervous system ; Vertebrates: nervous system and sense organs</subject><ispartof>NeuroImage (Orlando, Fla.), 2013-07, Vol.75, p.12-19</ispartof><rights>2013 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 15, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c697t-ea874c3711f13c4db9b1f0b63de29c8ed6d0c77a27e9f4df7070c0240fc262743</citedby><cites>FETCH-LOGICAL-c697t-ea874c3711f13c4db9b1f0b63de29c8ed6d0c77a27e9f4df7070c0240fc262743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1547316231?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27286918$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23473936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dmochowski, Jacek P.</creatorcontrib><creatorcontrib>Datta, Abhishek</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Richardson, Jessica D.</creatorcontrib><creatorcontrib>Bikson, Marom</creatorcontrib><creatorcontrib>Fridriksson, Julius</creatorcontrib><creatorcontrib>Parra, Lucas C.</creatorcontrib><title>Targeted transcranial direct current stimulation for rehabilitation after stroke</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation.
•An optimization algorithm which maximizes current flow at the target is derived.•Electric field intensities at the target are increased by 63%.•Optimized electric field strength is robust to perturbations of the target location.</description><subject>Algorithms</subject><subject>Aphasia</subject><subject>Biological and medical sciences</subject><subject>Brain stimulation</subject><subject>Cerebral Cortex - physiopathology</subject><subject>Direct current</subject><subject>Electric fields</subject><subject>Electrical stimulation of the brain</subject><subject>Electrodes</subject><subject>ESB</subject><subject>Functional magnetic resonance imaging</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical sciences</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Neuromodulation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Pilot Projects</subject><subject>Position (location)</subject><subject>Rehabilitation</subject><subject>Stimulation</subject><subject>Stroke</subject><subject>Stroke - physiopathology</subject><subject>Stroke Rehabilitation</subject><subject>Strokes</subject><subject>Transcranial direct current stimulation</subject><subject>Transcranial Magnetic Stimulation - methods</subject><subject>Vascular diseases and vascular malformations of the nervous system</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk9v1DAQxSMEon_gK6BICIlLwoyd2PEFiVYUkCrBoZwtx5lsvWTjYjuV-PZ4laUFDpSLbY1_8zR684qiRKgRULzZ1jMtwbud2VDNAHkNrIZGPSqOEVRbqVayx_t3y6sOUR0VJzFuAUBh0z0tjhhvJFdcHBdfrkzYUKKhTMHM0ebDmakcXCCbSruEQHMqY3K7ZTLJ-bkcfSgDXZveTS6tJTMmChkK_hs9K56MZor0_HCfFl8v3l-df6wuP3_4dP7usrJCyVSR6WRjuUQckdtm6FWPI_SCD8SU7WgQA1gpDZOkxmYYJUiwwBoYLRNMNvy0eLvq3iz9jgabxwxm0jchmxJ-aG-c_vNndtd64291gwyYVFng9UEg-O8LxaR3LlqaJjOTX6JGIVGwrm2bh9EWQAqG6j9UuZBdh1LKjL78C936JczZNM2gxZYphf-ksM1bzDNyzFS3Ujb4GAONd0Yg6H1k9FbfR0bvI6OB6RyZ3PridyPvGn9lJAOvDoCJ1kxjjoh18Z6TrBMKu8ydrRzltd86CjpaR7OlNUx68O7haX4Cci3kow</recordid><startdate>20130715</startdate><enddate>20130715</enddate><creator>Dmochowski, Jacek P.</creator><creator>Datta, Abhishek</creator><creator>Huang, Yu</creator><creator>Richardson, Jessica D.</creator><creator>Bikson, Marom</creator><creator>Fridriksson, Julius</creator><creator>Parra, Lucas C.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20130715</creationdate><title>Targeted transcranial direct current stimulation for rehabilitation after stroke</title><author>Dmochowski, Jacek P. ; Datta, Abhishek ; Huang, Yu ; Richardson, Jessica D. ; Bikson, Marom ; Fridriksson, Julius ; Parra, Lucas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c697t-ea874c3711f13c4db9b1f0b63de29c8ed6d0c77a27e9f4df7070c0240fc262743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Aphasia</topic><topic>Biological and medical sciences</topic><topic>Brain stimulation</topic><topic>Cerebral Cortex - physiopathology</topic><topic>Direct current</topic><topic>Electric fields</topic><topic>Electrical stimulation of the brain</topic><topic>Electrodes</topic><topic>ESB</topic><topic>Functional magnetic resonance imaging</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical sciences</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Neuromodulation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Pilot Projects</topic><topic>Position (location)</topic><topic>Rehabilitation</topic><topic>Stimulation</topic><topic>Stroke</topic><topic>Stroke - physiopathology</topic><topic>Stroke Rehabilitation</topic><topic>Strokes</topic><topic>Transcranial direct current stimulation</topic><topic>Transcranial Magnetic Stimulation - methods</topic><topic>Vascular diseases and vascular malformations of the nervous system</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dmochowski, Jacek P.</creatorcontrib><creatorcontrib>Datta, Abhishek</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Richardson, Jessica D.</creatorcontrib><creatorcontrib>Bikson, Marom</creatorcontrib><creatorcontrib>Fridriksson, Julius</creatorcontrib><creatorcontrib>Parra, Lucas C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dmochowski, Jacek P.</au><au>Datta, Abhishek</au><au>Huang, Yu</au><au>Richardson, Jessica D.</au><au>Bikson, Marom</au><au>Fridriksson, Julius</au><au>Parra, Lucas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted transcranial direct current stimulation for rehabilitation after stroke</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2013-07-15</date><risdate>2013</risdate><volume>75</volume><spage>12</spage><epage>19</epage><pages>12-19</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Transcranial direct current stimulation (tDCS) is being investigated as an adjunctive technique to behavioral rehabilitation treatment after stroke. The conventional “dosage”, consisting of a large (25cm2) anode over the target with the cathode over the contralateral hemisphere, has been previously shown to yield broadly distributed electric fields whose intensities at the target region are less than maximal. Here, we report the results of a systematic targeting procedure with small “high-definition” electrodes that was used in preparation for a pilot study on 8 stroke patients with chronic aphasia. We employ functional and anatomical magnetic resonance imagery (fMRI/MRI) to define a target and optimize (with respect to the electric field magnitude at the target) the electrode configuration, respectively, and demonstrate that electric field strengths in targeted cortex can be substantially increased (63%) over the conventional approach. The optimal montage exhibits significant variation across subjects as well as when perturbing the target location within a subject. However, for each displacement of the target co-ordinates, the algorithm is able to determine a montage which delivers a consistent amount of current to that location. These results demonstrate that MRI-based models of current flow yield maximal stimulation of target structures, and as such, may aid in reliably assessing the efficacy of tDCS in neuro-rehabilitation.
•An optimization algorithm which maximizes current flow at the target is derived.•Electric field intensities at the target are increased by 63%.•Optimized electric field strength is robust to perturbations of the target location.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>23473936</pmid><doi>10.1016/j.neuroimage.2013.02.049</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2013-07, Vol.75, p.12-19 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4120279 |
source | MEDLINE; Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Algorithms Aphasia Biological and medical sciences Brain stimulation Cerebral Cortex - physiopathology Direct current Electric fields Electrical stimulation of the brain Electrodes ESB Functional magnetic resonance imaging Fundamental and applied biological sciences. Psychology Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical sciences Neural networks Neurology Neuromodulation NMR Nuclear magnetic resonance Optimization algorithms Optimization techniques Pilot Projects Position (location) Rehabilitation Stimulation Stroke Stroke - physiopathology Stroke Rehabilitation Strokes Transcranial direct current stimulation Transcranial Magnetic Stimulation - methods Vascular diseases and vascular malformations of the nervous system Vertebrates: nervous system and sense organs |
title | Targeted transcranial direct current stimulation for rehabilitation after stroke |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20transcranial%20direct%20current%20stimulation%20for%20rehabilitation%20after%20stroke&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Dmochowski,%20Jacek%20P.&rft.date=2013-07-15&rft.volume=75&rft.spage=12&rft.epage=19&rft.pages=12-19&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2013.02.049&rft_dat=%3Cproquest_pubme%3E1367881777%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547316231&rft_id=info:pmid/23473936&rft_els_id=S1053811913001833&rfr_iscdi=true |