A new method for constructing networks from binary data

Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2014-08, Vol.4 (1), p.5918-5918, Article 5918
Hauptverfasser: van Borkulo, Claudia D., Borsboom, Denny, Epskamp, Sacha, Blanken, Tessa F., Boschloo, Lynn, Schoevers, Robert A., Waldorp, Lourens J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5918
container_issue 1
container_start_page 5918
container_title Scientific reports
container_volume 4
creator van Borkulo, Claudia D.
Borsboom, Denny
Epskamp, Sacha
Blanken, Tessa F.
Boschloo, Lynn
Schoevers, Robert A.
Waldorp, Lourens J.
description Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the present paper, we present a method for assessing network structures from binary data. Although models for binary data are infamous for their computational intractability, we present a computationally efficient model for estimating network structures. The approach, which is based on Ising models as used in physics, combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant relationships between variables that define connections in a network. A validation study shows that this method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our proposed method to estimate the network of depression and anxiety symptoms from symptom scores of 1108 subjects. Possible extensions of the model are discussed.
doi_str_mv 10.1038/srep05918
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4118196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551026873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-b8e2c576907e3c8ae8f0ed86dee31dc76bc7ea6aaa87866f8b655df7c5f51aa93</originalsourceid><addsrcrecordid>eNplkV9LwzAUxYMobsw9-AWk4IsK1SRt0vRFGMN_MPBFn0Oa3m6dbTKT1uG3N7I5publBs6Pc8-9F6FTgq8JTsSNd7DCLCfiAA0pTllME0oP9_4DNPZ-icNjNE9JfowGlGFBSZoPUTaJDKyjFrqFLaPKukhb4zvX664286B1a-vefFQ520ZFbZT7jErVqRN0VKnGw3hbR-j1_u5l-hjPnh-eppNZrBlOu7gQQDXLeI4zSLRQICoMpeAlQEJKnfFCZ6C4UkpkgvNKFJyxsso0qxhRKk9G6Hbju-qLFkoNpnOqkStXtyGKtKqWvxVTL-TcfsiUEEFyHgwutgbOvvfgO9nWXkPTKAO295IwRjDlIksCev4HXdremTCeJCIXhPFgGqjLDaWd9WH51S4MwfL7InJ3kcCe7affkT_7D8DVBvBBMnNwey3_uX0BaV2VnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898156411</pqid></control><display><type>article</type><title>A new method for constructing networks from binary data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>van Borkulo, Claudia D. ; Borsboom, Denny ; Epskamp, Sacha ; Blanken, Tessa F. ; Boschloo, Lynn ; Schoevers, Robert A. ; Waldorp, Lourens J.</creator><creatorcontrib>van Borkulo, Claudia D. ; Borsboom, Denny ; Epskamp, Sacha ; Blanken, Tessa F. ; Boschloo, Lynn ; Schoevers, Robert A. ; Waldorp, Lourens J.</creatorcontrib><description>Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the present paper, we present a method for assessing network structures from binary data. Although models for binary data are infamous for their computational intractability, we present a computationally efficient model for estimating network structures. The approach, which is based on Ising models as used in physics, combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant relationships between variables that define connections in a network. A validation study shows that this method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our proposed method to estimate the network of depression and anxiety symptoms from symptom scores of 1108 subjects. Possible extensions of the model are discussed.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep05918</identifier><identifier>PMID: 25082149</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/477 ; 639/705 ; 692/1807 ; Algorithms ; Anxiety ; Approximation ; Case-Control Studies ; Computer applications ; Computer Simulation ; Data processing ; Depression - diagnosis ; Depression - psychology ; Humanities and Social Sciences ; Humans ; Mental depression ; Methods ; Models, Theoretical ; multidisciplinary ; Psychology ; Psychopathology ; Regression analysis ; Science ; Software ; Validation studies ; Variables</subject><ispartof>Scientific reports, 2014-08, Vol.4 (1), p.5918-5918, Article 5918</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Aug 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-b8e2c576907e3c8ae8f0ed86dee31dc76bc7ea6aaa87866f8b655df7c5f51aa93</citedby><cites>FETCH-LOGICAL-c504t-b8e2c576907e3c8ae8f0ed86dee31dc76bc7ea6aaa87866f8b655df7c5f51aa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118196/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118196/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25082149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Borkulo, Claudia D.</creatorcontrib><creatorcontrib>Borsboom, Denny</creatorcontrib><creatorcontrib>Epskamp, Sacha</creatorcontrib><creatorcontrib>Blanken, Tessa F.</creatorcontrib><creatorcontrib>Boschloo, Lynn</creatorcontrib><creatorcontrib>Schoevers, Robert A.</creatorcontrib><creatorcontrib>Waldorp, Lourens J.</creatorcontrib><title>A new method for constructing networks from binary data</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the present paper, we present a method for assessing network structures from binary data. Although models for binary data are infamous for their computational intractability, we present a computationally efficient model for estimating network structures. The approach, which is based on Ising models as used in physics, combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant relationships between variables that define connections in a network. A validation study shows that this method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our proposed method to estimate the network of depression and anxiety symptoms from symptom scores of 1108 subjects. Possible extensions of the model are discussed.</description><subject>631/477</subject><subject>639/705</subject><subject>692/1807</subject><subject>Algorithms</subject><subject>Anxiety</subject><subject>Approximation</subject><subject>Case-Control Studies</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Data processing</subject><subject>Depression - diagnosis</subject><subject>Depression - psychology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mental depression</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>multidisciplinary</subject><subject>Psychology</subject><subject>Psychopathology</subject><subject>Regression analysis</subject><subject>Science</subject><subject>Software</subject><subject>Validation studies</subject><subject>Variables</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV9LwzAUxYMobsw9-AWk4IsK1SRt0vRFGMN_MPBFn0Oa3m6dbTKT1uG3N7I5publBs6Pc8-9F6FTgq8JTsSNd7DCLCfiAA0pTllME0oP9_4DNPZ-icNjNE9JfowGlGFBSZoPUTaJDKyjFrqFLaPKukhb4zvX664286B1a-vefFQ520ZFbZT7jErVqRN0VKnGw3hbR-j1_u5l-hjPnh-eppNZrBlOu7gQQDXLeI4zSLRQICoMpeAlQEJKnfFCZ6C4UkpkgvNKFJyxsso0qxhRKk9G6Hbju-qLFkoNpnOqkStXtyGKtKqWvxVTL-TcfsiUEEFyHgwutgbOvvfgO9nWXkPTKAO295IwRjDlIksCev4HXdremTCeJCIXhPFgGqjLDaWd9WH51S4MwfL7InJ3kcCe7affkT_7D8DVBvBBMnNwey3_uX0BaV2VnQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>van Borkulo, Claudia D.</creator><creator>Borsboom, Denny</creator><creator>Epskamp, Sacha</creator><creator>Blanken, Tessa F.</creator><creator>Boschloo, Lynn</creator><creator>Schoevers, Robert A.</creator><creator>Waldorp, Lourens J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>A new method for constructing networks from binary data</title><author>van Borkulo, Claudia D. ; Borsboom, Denny ; Epskamp, Sacha ; Blanken, Tessa F. ; Boschloo, Lynn ; Schoevers, Robert A. ; Waldorp, Lourens J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-b8e2c576907e3c8ae8f0ed86dee31dc76bc7ea6aaa87866f8b655df7c5f51aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/477</topic><topic>639/705</topic><topic>692/1807</topic><topic>Algorithms</topic><topic>Anxiety</topic><topic>Approximation</topic><topic>Case-Control Studies</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Data processing</topic><topic>Depression - diagnosis</topic><topic>Depression - psychology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mental depression</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>multidisciplinary</topic><topic>Psychology</topic><topic>Psychopathology</topic><topic>Regression analysis</topic><topic>Science</topic><topic>Software</topic><topic>Validation studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Borkulo, Claudia D.</creatorcontrib><creatorcontrib>Borsboom, Denny</creatorcontrib><creatorcontrib>Epskamp, Sacha</creatorcontrib><creatorcontrib>Blanken, Tessa F.</creatorcontrib><creatorcontrib>Boschloo, Lynn</creatorcontrib><creatorcontrib>Schoevers, Robert A.</creatorcontrib><creatorcontrib>Waldorp, Lourens J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Borkulo, Claudia D.</au><au>Borsboom, Denny</au><au>Epskamp, Sacha</au><au>Blanken, Tessa F.</au><au>Boschloo, Lynn</au><au>Schoevers, Robert A.</au><au>Waldorp, Lourens J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method for constructing networks from binary data</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>5918</spage><epage>5918</epage><pages>5918-5918</pages><artnum>5918</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the present paper, we present a method for assessing network structures from binary data. Although models for binary data are infamous for their computational intractability, we present a computationally efficient model for estimating network structures. The approach, which is based on Ising models as used in physics, combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant relationships between variables that define connections in a network. A validation study shows that this method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our proposed method to estimate the network of depression and anxiety symptoms from symptom scores of 1108 subjects. Possible extensions of the model are discussed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25082149</pmid><doi>10.1038/srep05918</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2014-08, Vol.4 (1), p.5918-5918, Article 5918
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4118196
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/477
639/705
692/1807
Algorithms
Anxiety
Approximation
Case-Control Studies
Computer applications
Computer Simulation
Data processing
Depression - diagnosis
Depression - psychology
Humanities and Social Sciences
Humans
Mental depression
Methods
Models, Theoretical
multidisciplinary
Psychology
Psychopathology
Regression analysis
Science
Software
Validation studies
Variables
title A new method for constructing networks from binary data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20for%20constructing%20networks%20from%20binary%20data&rft.jtitle=Scientific%20reports&rft.au=van%20Borkulo,%20Claudia%20D.&rft.date=2014-08-01&rft.volume=4&rft.issue=1&rft.spage=5918&rft.epage=5918&rft.pages=5918-5918&rft.artnum=5918&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep05918&rft_dat=%3Cproquest_pubme%3E1551026873%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898156411&rft_id=info:pmid/25082149&rfr_iscdi=true