A new method for constructing networks from binary data
Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2014-08, Vol.4 (1), p.5918-5918, Article 5918 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5918 |
---|---|
container_issue | 1 |
container_start_page | 5918 |
container_title | Scientific reports |
container_volume | 4 |
creator | van Borkulo, Claudia D. Borsboom, Denny Epskamp, Sacha Blanken, Tessa F. Boschloo, Lynn Schoevers, Robert A. Waldorp, Lourens J. |
description | Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the present paper, we present a method for assessing network structures from binary data. Although models for binary data are infamous for their computational intractability, we present a computationally efficient model for estimating network structures. The approach, which is based on Ising models as used in physics, combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant relationships between variables that define connections in a network. A validation study shows that this method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our proposed method to estimate the network of depression and anxiety symptoms from symptom scores of 1108 subjects. Possible extensions of the model are discussed. |
doi_str_mv | 10.1038/srep05918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4118196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551026873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-b8e2c576907e3c8ae8f0ed86dee31dc76bc7ea6aaa87866f8b655df7c5f51aa93</originalsourceid><addsrcrecordid>eNplkV9LwzAUxYMobsw9-AWk4IsK1SRt0vRFGMN_MPBFn0Oa3m6dbTKT1uG3N7I5publBs6Pc8-9F6FTgq8JTsSNd7DCLCfiAA0pTllME0oP9_4DNPZ-icNjNE9JfowGlGFBSZoPUTaJDKyjFrqFLaPKukhb4zvX664286B1a-vefFQ520ZFbZT7jErVqRN0VKnGw3hbR-j1_u5l-hjPnh-eppNZrBlOu7gQQDXLeI4zSLRQICoMpeAlQEJKnfFCZ6C4UkpkgvNKFJyxsso0qxhRKk9G6Hbju-qLFkoNpnOqkStXtyGKtKqWvxVTL-TcfsiUEEFyHgwutgbOvvfgO9nWXkPTKAO295IwRjDlIksCev4HXdremTCeJCIXhPFgGqjLDaWd9WH51S4MwfL7InJ3kcCe7affkT_7D8DVBvBBMnNwey3_uX0BaV2VnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898156411</pqid></control><display><type>article</type><title>A new method for constructing networks from binary data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>van Borkulo, Claudia D. ; Borsboom, Denny ; Epskamp, Sacha ; Blanken, Tessa F. ; Boschloo, Lynn ; Schoevers, Robert A. ; Waldorp, Lourens J.</creator><creatorcontrib>van Borkulo, Claudia D. ; Borsboom, Denny ; Epskamp, Sacha ; Blanken, Tessa F. ; Boschloo, Lynn ; Schoevers, Robert A. ; Waldorp, Lourens J.</creatorcontrib><description>Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the present paper, we present a method for assessing network structures from binary data. Although models for binary data are infamous for their computational intractability, we present a computationally efficient model for estimating network structures. The approach, which is based on Ising models as used in physics, combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant relationships between variables that define connections in a network. A validation study shows that this method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our proposed method to estimate the network of depression and anxiety symptoms from symptom scores of 1108 subjects. Possible extensions of the model are discussed.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep05918</identifier><identifier>PMID: 25082149</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/477 ; 639/705 ; 692/1807 ; Algorithms ; Anxiety ; Approximation ; Case-Control Studies ; Computer applications ; Computer Simulation ; Data processing ; Depression - diagnosis ; Depression - psychology ; Humanities and Social Sciences ; Humans ; Mental depression ; Methods ; Models, Theoretical ; multidisciplinary ; Psychology ; Psychopathology ; Regression analysis ; Science ; Software ; Validation studies ; Variables</subject><ispartof>Scientific reports, 2014-08, Vol.4 (1), p.5918-5918, Article 5918</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Aug 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-b8e2c576907e3c8ae8f0ed86dee31dc76bc7ea6aaa87866f8b655df7c5f51aa93</citedby><cites>FETCH-LOGICAL-c504t-b8e2c576907e3c8ae8f0ed86dee31dc76bc7ea6aaa87866f8b655df7c5f51aa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118196/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118196/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25082149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Borkulo, Claudia D.</creatorcontrib><creatorcontrib>Borsboom, Denny</creatorcontrib><creatorcontrib>Epskamp, Sacha</creatorcontrib><creatorcontrib>Blanken, Tessa F.</creatorcontrib><creatorcontrib>Boschloo, Lynn</creatorcontrib><creatorcontrib>Schoevers, Robert A.</creatorcontrib><creatorcontrib>Waldorp, Lourens J.</creatorcontrib><title>A new method for constructing networks from binary data</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the present paper, we present a method for assessing network structures from binary data. Although models for binary data are infamous for their computational intractability, we present a computationally efficient model for estimating network structures. The approach, which is based on Ising models as used in physics, combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant relationships between variables that define connections in a network. A validation study shows that this method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our proposed method to estimate the network of depression and anxiety symptoms from symptom scores of 1108 subjects. Possible extensions of the model are discussed.</description><subject>631/477</subject><subject>639/705</subject><subject>692/1807</subject><subject>Algorithms</subject><subject>Anxiety</subject><subject>Approximation</subject><subject>Case-Control Studies</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Data processing</subject><subject>Depression - diagnosis</subject><subject>Depression - psychology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Mental depression</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>multidisciplinary</subject><subject>Psychology</subject><subject>Psychopathology</subject><subject>Regression analysis</subject><subject>Science</subject><subject>Software</subject><subject>Validation studies</subject><subject>Variables</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkV9LwzAUxYMobsw9-AWk4IsK1SRt0vRFGMN_MPBFn0Oa3m6dbTKT1uG3N7I5publBs6Pc8-9F6FTgq8JTsSNd7DCLCfiAA0pTllME0oP9_4DNPZ-icNjNE9JfowGlGFBSZoPUTaJDKyjFrqFLaPKukhb4zvX664286B1a-vefFQ520ZFbZT7jErVqRN0VKnGw3hbR-j1_u5l-hjPnh-eppNZrBlOu7gQQDXLeI4zSLRQICoMpeAlQEJKnfFCZ6C4UkpkgvNKFJyxsso0qxhRKk9G6Hbju-qLFkoNpnOqkStXtyGKtKqWvxVTL-TcfsiUEEFyHgwutgbOvvfgO9nWXkPTKAO295IwRjDlIksCev4HXdremTCeJCIXhPFgGqjLDaWd9WH51S4MwfL7InJ3kcCe7affkT_7D8DVBvBBMnNwey3_uX0BaV2VnQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>van Borkulo, Claudia D.</creator><creator>Borsboom, Denny</creator><creator>Epskamp, Sacha</creator><creator>Blanken, Tessa F.</creator><creator>Boschloo, Lynn</creator><creator>Schoevers, Robert A.</creator><creator>Waldorp, Lourens J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>A new method for constructing networks from binary data</title><author>van Borkulo, Claudia D. ; Borsboom, Denny ; Epskamp, Sacha ; Blanken, Tessa F. ; Boschloo, Lynn ; Schoevers, Robert A. ; Waldorp, Lourens J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-b8e2c576907e3c8ae8f0ed86dee31dc76bc7ea6aaa87866f8b655df7c5f51aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/477</topic><topic>639/705</topic><topic>692/1807</topic><topic>Algorithms</topic><topic>Anxiety</topic><topic>Approximation</topic><topic>Case-Control Studies</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Data processing</topic><topic>Depression - diagnosis</topic><topic>Depression - psychology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Mental depression</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>multidisciplinary</topic><topic>Psychology</topic><topic>Psychopathology</topic><topic>Regression analysis</topic><topic>Science</topic><topic>Software</topic><topic>Validation studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Borkulo, Claudia D.</creatorcontrib><creatorcontrib>Borsboom, Denny</creatorcontrib><creatorcontrib>Epskamp, Sacha</creatorcontrib><creatorcontrib>Blanken, Tessa F.</creatorcontrib><creatorcontrib>Boschloo, Lynn</creatorcontrib><creatorcontrib>Schoevers, Robert A.</creatorcontrib><creatorcontrib>Waldorp, Lourens J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Borkulo, Claudia D.</au><au>Borsboom, Denny</au><au>Epskamp, Sacha</au><au>Blanken, Tessa F.</au><au>Boschloo, Lynn</au><au>Schoevers, Robert A.</au><au>Waldorp, Lourens J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method for constructing networks from binary data</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>5918</spage><epage>5918</epage><pages>5918-5918</pages><artnum>5918</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the present paper, we present a method for assessing network structures from binary data. Although models for binary data are infamous for their computational intractability, we present a computationally efficient model for estimating network structures. The approach, which is based on Ising models as used in physics, combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant relationships between variables that define connections in a network. A validation study shows that this method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our proposed method to estimate the network of depression and anxiety symptoms from symptom scores of 1108 subjects. Possible extensions of the model are discussed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25082149</pmid><doi>10.1038/srep05918</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2014-08, Vol.4 (1), p.5918-5918, Article 5918 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4118196 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 631/477 639/705 692/1807 Algorithms Anxiety Approximation Case-Control Studies Computer applications Computer Simulation Data processing Depression - diagnosis Depression - psychology Humanities and Social Sciences Humans Mental depression Methods Models, Theoretical multidisciplinary Psychology Psychopathology Regression analysis Science Software Validation studies Variables |
title | A new method for constructing networks from binary data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A45%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20for%20constructing%20networks%20from%20binary%20data&rft.jtitle=Scientific%20reports&rft.au=van%20Borkulo,%20Claudia%20D.&rft.date=2014-08-01&rft.volume=4&rft.issue=1&rft.spage=5918&rft.epage=5918&rft.pages=5918-5918&rft.artnum=5918&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep05918&rft_dat=%3Cproquest_pubme%3E1551026873%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898156411&rft_id=info:pmid/25082149&rfr_iscdi=true |