Systems Analysis of the Response of Photosynthesis, Metabolism, and Growth to an Increase in Irradiance in the Photosynthetic Model Organism Chlamydomonas reinhardtii

We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant cell 2014-06, Vol.26 (6), p.2310-2350
Hauptverfasser: Mettler, Tabea, Mühlhaus, Timo, Hemme, Dorothea, Schöttler, Mark-Aurel, Rupprecht, Jens, Idoine, Adam, Veyel, Daniel, Pal, Sunil Kumar, Yaneva-Roder, Liliya, Winck, Flavia Vischi, Sommer, Frederik, Vosloh, Daniel, Seiwert, Bettina, Erban, Alexander, Burgos, Asdrubal, Arvidsson, Samuel, Schönfelder, Stephanie, Arnold, Anne, Günther, Manuela, Krause, Ursula, Lohse, Marc, Kopka, Joachim, Nikoloski, Zoran, Mueller-Roeber, Bernd, Willmitzer, Lothar, Bock, Ralph, Schroda, Michael, Stitt, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2350
container_issue 6
container_start_page 2310
container_title The Plant cell
container_volume 26
creator Mettler, Tabea
Mühlhaus, Timo
Hemme, Dorothea
Schöttler, Mark-Aurel
Rupprecht, Jens
Idoine, Adam
Veyel, Daniel
Pal, Sunil Kumar
Yaneva-Roder, Liliya
Winck, Flavia Vischi
Sommer, Frederik
Vosloh, Daniel
Seiwert, Bettina
Erban, Alexander
Burgos, Asdrubal
Arvidsson, Samuel
Schönfelder, Stephanie
Arnold, Anne
Günther, Manuela
Krause, Ursula
Lohse, Marc
Kopka, Joachim
Nikoloski, Zoran
Mueller-Roeber, Bernd
Willmitzer, Lothar
Bock, Ralph
Schroda, Michael
Stitt, Mark
description We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R² = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance.
doi_str_mv 10.1105/tpc.114.124537
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4114937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43190684</jstor_id><sourcerecordid>43190684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-303a5cfd8ea582ed9a6e5b5d1713562dc4960df02f91b077f743c0f009b81e993</originalsourceid><addsrcrecordid>eNqFUk1v1DAQjRCIlsKVG8hHDs3izyS-IFUrKJVaFfEhcbO89qRxldhb2wvKH-J34rBlVU6c_Mbz5mlG71XVS4JXhGDxNm9NAXxFKBesfVQdE8FoTWX3_XHBmOOaN4IcVc9SusUYk5bIp9UR5Z3kmIvj6teXOWWYEjrzepyTSyj0KA-APkPaBp9gqT8NIYc0-_JfGKfoCrLehNGl6RRpb9F5DD_zgHIoFbrwJoIug67gGLV12ps_1SL7QCo7g66ChRFdxxvtixpaD6OeZhum4HVCEZwfdLTZuefVk16PCV7cvyfVtw_vv64_1pfX5xfrs8vacCxyzTDTwvS2Ay06ClbqBsRG2HI2Ew21hssG2x7TXpINbtu-5czgHmO56QhIyU6qd3vd7W4zgTXgc9Sj2kY36TiroJ36t-PdoG7CD8WLCZK1ReDNvUAMdztIWU0uGRhH7SHskqKLCV1xi_6XSjraCMkpXdZa7akmhpQi9IeNCFZLDlTJQQFc7XNQBl4_vONA_2t8IbzaE25TDvHQ54xI3HSc_QZnobxL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826594229</pqid></control><display><type>article</type><title>Systems Analysis of the Response of Photosynthesis, Metabolism, and Growth to an Increase in Irradiance in the Photosynthetic Model Organism Chlamydomonas reinhardtii</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mettler, Tabea ; Mühlhaus, Timo ; Hemme, Dorothea ; Schöttler, Mark-Aurel ; Rupprecht, Jens ; Idoine, Adam ; Veyel, Daniel ; Pal, Sunil Kumar ; Yaneva-Roder, Liliya ; Winck, Flavia Vischi ; Sommer, Frederik ; Vosloh, Daniel ; Seiwert, Bettina ; Erban, Alexander ; Burgos, Asdrubal ; Arvidsson, Samuel ; Schönfelder, Stephanie ; Arnold, Anne ; Günther, Manuela ; Krause, Ursula ; Lohse, Marc ; Kopka, Joachim ; Nikoloski, Zoran ; Mueller-Roeber, Bernd ; Willmitzer, Lothar ; Bock, Ralph ; Schroda, Michael ; Stitt, Mark</creator><creatorcontrib>Mettler, Tabea ; Mühlhaus, Timo ; Hemme, Dorothea ; Schöttler, Mark-Aurel ; Rupprecht, Jens ; Idoine, Adam ; Veyel, Daniel ; Pal, Sunil Kumar ; Yaneva-Roder, Liliya ; Winck, Flavia Vischi ; Sommer, Frederik ; Vosloh, Daniel ; Seiwert, Bettina ; Erban, Alexander ; Burgos, Asdrubal ; Arvidsson, Samuel ; Schönfelder, Stephanie ; Arnold, Anne ; Günther, Manuela ; Krause, Ursula ; Lohse, Marc ; Kopka, Joachim ; Nikoloski, Zoran ; Mueller-Roeber, Bernd ; Willmitzer, Lothar ; Bock, Ralph ; Schroda, Michael ; Stitt, Mark</creatorcontrib><description>We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R² = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance.</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.114.124537</identifier><identifier>PMID: 24894045</identifier><language>eng</language><publisher>England: American Society of Plant Biologists</publisher><subject>Bioreactors ; carbon dioxide fixation ; Chlamydomonas reinhardtii ; Enzyme substrates ; Enzymes ; Large-Scale Biology ; LARGE-SCALE BIOLOGY ARTICLE ; light intensity ; Luminous intensity ; metabolites ; Photons ; Photosynthesis ; Plant cells ; Plants ; Protein metabolism ; Starches ; systems analysis</subject><ispartof>The Plant cell, 2014-06, Vol.26 (6), p.2310-2350</ispartof><rights>2014 American Society of Plant Biologists</rights><rights>2014 American Society of Plant Biologists. All rights reserved.</rights><rights>2014 American Society of Plant Biologists. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-303a5cfd8ea582ed9a6e5b5d1713562dc4960df02f91b077f743c0f009b81e993</citedby><cites>FETCH-LOGICAL-c405t-303a5cfd8ea582ed9a6e5b5d1713562dc4960df02f91b077f743c0f009b81e993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43190684$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43190684$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24894045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mettler, Tabea</creatorcontrib><creatorcontrib>Mühlhaus, Timo</creatorcontrib><creatorcontrib>Hemme, Dorothea</creatorcontrib><creatorcontrib>Schöttler, Mark-Aurel</creatorcontrib><creatorcontrib>Rupprecht, Jens</creatorcontrib><creatorcontrib>Idoine, Adam</creatorcontrib><creatorcontrib>Veyel, Daniel</creatorcontrib><creatorcontrib>Pal, Sunil Kumar</creatorcontrib><creatorcontrib>Yaneva-Roder, Liliya</creatorcontrib><creatorcontrib>Winck, Flavia Vischi</creatorcontrib><creatorcontrib>Sommer, Frederik</creatorcontrib><creatorcontrib>Vosloh, Daniel</creatorcontrib><creatorcontrib>Seiwert, Bettina</creatorcontrib><creatorcontrib>Erban, Alexander</creatorcontrib><creatorcontrib>Burgos, Asdrubal</creatorcontrib><creatorcontrib>Arvidsson, Samuel</creatorcontrib><creatorcontrib>Schönfelder, Stephanie</creatorcontrib><creatorcontrib>Arnold, Anne</creatorcontrib><creatorcontrib>Günther, Manuela</creatorcontrib><creatorcontrib>Krause, Ursula</creatorcontrib><creatorcontrib>Lohse, Marc</creatorcontrib><creatorcontrib>Kopka, Joachim</creatorcontrib><creatorcontrib>Nikoloski, Zoran</creatorcontrib><creatorcontrib>Mueller-Roeber, Bernd</creatorcontrib><creatorcontrib>Willmitzer, Lothar</creatorcontrib><creatorcontrib>Bock, Ralph</creatorcontrib><creatorcontrib>Schroda, Michael</creatorcontrib><creatorcontrib>Stitt, Mark</creatorcontrib><title>Systems Analysis of the Response of Photosynthesis, Metabolism, and Growth to an Increase in Irradiance in the Photosynthetic Model Organism Chlamydomonas reinhardtii</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R² = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance.</description><subject>Bioreactors</subject><subject>carbon dioxide fixation</subject><subject>Chlamydomonas reinhardtii</subject><subject>Enzyme substrates</subject><subject>Enzymes</subject><subject>Large-Scale Biology</subject><subject>LARGE-SCALE BIOLOGY ARTICLE</subject><subject>light intensity</subject><subject>Luminous intensity</subject><subject>metabolites</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Plant cells</subject><subject>Plants</subject><subject>Protein metabolism</subject><subject>Starches</subject><subject>systems analysis</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUk1v1DAQjRCIlsKVG8hHDs3izyS-IFUrKJVaFfEhcbO89qRxldhb2wvKH-J34rBlVU6c_Mbz5mlG71XVS4JXhGDxNm9NAXxFKBesfVQdE8FoTWX3_XHBmOOaN4IcVc9SusUYk5bIp9UR5Z3kmIvj6teXOWWYEjrzepyTSyj0KA-APkPaBp9gqT8NIYc0-_JfGKfoCrLehNGl6RRpb9F5DD_zgHIoFbrwJoIug67gGLV12ps_1SL7QCo7g66ChRFdxxvtixpaD6OeZhum4HVCEZwfdLTZuefVk16PCV7cvyfVtw_vv64_1pfX5xfrs8vacCxyzTDTwvS2Ay06ClbqBsRG2HI2Ew21hssG2x7TXpINbtu-5czgHmO56QhIyU6qd3vd7W4zgTXgc9Sj2kY36TiroJ36t-PdoG7CD8WLCZK1ReDNvUAMdztIWU0uGRhH7SHskqKLCV1xi_6XSjraCMkpXdZa7akmhpQi9IeNCFZLDlTJQQFc7XNQBl4_vONA_2t8IbzaE25TDvHQ54xI3HSc_QZnobxL</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Mettler, Tabea</creator><creator>Mühlhaus, Timo</creator><creator>Hemme, Dorothea</creator><creator>Schöttler, Mark-Aurel</creator><creator>Rupprecht, Jens</creator><creator>Idoine, Adam</creator><creator>Veyel, Daniel</creator><creator>Pal, Sunil Kumar</creator><creator>Yaneva-Roder, Liliya</creator><creator>Winck, Flavia Vischi</creator><creator>Sommer, Frederik</creator><creator>Vosloh, Daniel</creator><creator>Seiwert, Bettina</creator><creator>Erban, Alexander</creator><creator>Burgos, Asdrubal</creator><creator>Arvidsson, Samuel</creator><creator>Schönfelder, Stephanie</creator><creator>Arnold, Anne</creator><creator>Günther, Manuela</creator><creator>Krause, Ursula</creator><creator>Lohse, Marc</creator><creator>Kopka, Joachim</creator><creator>Nikoloski, Zoran</creator><creator>Mueller-Roeber, Bernd</creator><creator>Willmitzer, Lothar</creator><creator>Bock, Ralph</creator><creator>Schroda, Michael</creator><creator>Stitt, Mark</creator><general>American Society of Plant Biologists</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140601</creationdate><title>Systems Analysis of the Response of Photosynthesis, Metabolism, and Growth to an Increase in Irradiance in the Photosynthetic Model Organism Chlamydomonas reinhardtii</title><author>Mettler, Tabea ; Mühlhaus, Timo ; Hemme, Dorothea ; Schöttler, Mark-Aurel ; Rupprecht, Jens ; Idoine, Adam ; Veyel, Daniel ; Pal, Sunil Kumar ; Yaneva-Roder, Liliya ; Winck, Flavia Vischi ; Sommer, Frederik ; Vosloh, Daniel ; Seiwert, Bettina ; Erban, Alexander ; Burgos, Asdrubal ; Arvidsson, Samuel ; Schönfelder, Stephanie ; Arnold, Anne ; Günther, Manuela ; Krause, Ursula ; Lohse, Marc ; Kopka, Joachim ; Nikoloski, Zoran ; Mueller-Roeber, Bernd ; Willmitzer, Lothar ; Bock, Ralph ; Schroda, Michael ; Stitt, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-303a5cfd8ea582ed9a6e5b5d1713562dc4960df02f91b077f743c0f009b81e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bioreactors</topic><topic>carbon dioxide fixation</topic><topic>Chlamydomonas reinhardtii</topic><topic>Enzyme substrates</topic><topic>Enzymes</topic><topic>Large-Scale Biology</topic><topic>LARGE-SCALE BIOLOGY ARTICLE</topic><topic>light intensity</topic><topic>Luminous intensity</topic><topic>metabolites</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Plant cells</topic><topic>Plants</topic><topic>Protein metabolism</topic><topic>Starches</topic><topic>systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mettler, Tabea</creatorcontrib><creatorcontrib>Mühlhaus, Timo</creatorcontrib><creatorcontrib>Hemme, Dorothea</creatorcontrib><creatorcontrib>Schöttler, Mark-Aurel</creatorcontrib><creatorcontrib>Rupprecht, Jens</creatorcontrib><creatorcontrib>Idoine, Adam</creatorcontrib><creatorcontrib>Veyel, Daniel</creatorcontrib><creatorcontrib>Pal, Sunil Kumar</creatorcontrib><creatorcontrib>Yaneva-Roder, Liliya</creatorcontrib><creatorcontrib>Winck, Flavia Vischi</creatorcontrib><creatorcontrib>Sommer, Frederik</creatorcontrib><creatorcontrib>Vosloh, Daniel</creatorcontrib><creatorcontrib>Seiwert, Bettina</creatorcontrib><creatorcontrib>Erban, Alexander</creatorcontrib><creatorcontrib>Burgos, Asdrubal</creatorcontrib><creatorcontrib>Arvidsson, Samuel</creatorcontrib><creatorcontrib>Schönfelder, Stephanie</creatorcontrib><creatorcontrib>Arnold, Anne</creatorcontrib><creatorcontrib>Günther, Manuela</creatorcontrib><creatorcontrib>Krause, Ursula</creatorcontrib><creatorcontrib>Lohse, Marc</creatorcontrib><creatorcontrib>Kopka, Joachim</creatorcontrib><creatorcontrib>Nikoloski, Zoran</creatorcontrib><creatorcontrib>Mueller-Roeber, Bernd</creatorcontrib><creatorcontrib>Willmitzer, Lothar</creatorcontrib><creatorcontrib>Bock, Ralph</creatorcontrib><creatorcontrib>Schroda, Michael</creatorcontrib><creatorcontrib>Stitt, Mark</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mettler, Tabea</au><au>Mühlhaus, Timo</au><au>Hemme, Dorothea</au><au>Schöttler, Mark-Aurel</au><au>Rupprecht, Jens</au><au>Idoine, Adam</au><au>Veyel, Daniel</au><au>Pal, Sunil Kumar</au><au>Yaneva-Roder, Liliya</au><au>Winck, Flavia Vischi</au><au>Sommer, Frederik</au><au>Vosloh, Daniel</au><au>Seiwert, Bettina</au><au>Erban, Alexander</au><au>Burgos, Asdrubal</au><au>Arvidsson, Samuel</au><au>Schönfelder, Stephanie</au><au>Arnold, Anne</au><au>Günther, Manuela</au><au>Krause, Ursula</au><au>Lohse, Marc</au><au>Kopka, Joachim</au><au>Nikoloski, Zoran</au><au>Mueller-Roeber, Bernd</au><au>Willmitzer, Lothar</au><au>Bock, Ralph</au><au>Schroda, Michael</au><au>Stitt, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systems Analysis of the Response of Photosynthesis, Metabolism, and Growth to an Increase in Irradiance in the Photosynthetic Model Organism Chlamydomonas reinhardtii</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>26</volume><issue>6</issue><spage>2310</spage><epage>2350</epage><pages>2310-2350</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>We investigated the systems response of metabolism and growth after an increase in irradiance in the nonsaturating range in the algal model Chlamydomonas reinhardtii. In a three-step process, photosynthesis and the levels of metabolites increased immediately, growth increased after 10 to 15 min, and transcript and protein abundance responded by 40 and 120 to 240 min, respectively. In the first phase, starch and metabolites provided a transient buffer for carbon until growth increased. This uncouples photosynthesis from growth in a fluctuating light environment. In the first and second phases, rising metabolite levels and increased polysome loading drove an increase in fluxes. Most Calvin-Benson cycle (CBC) enzymes were substrate-limited in vivo, and strikingly, many were present at higher concentrations than their substrates, explaining how rising metabolite levels stimulate CBC flux. Rubisco, fructose-1,6-biosphosphatase, and seduheptulose-1,7-bisphosphatase were close to substrate saturation in vivo, and flux was increased by posttranslational activation. In the third phase, changes in abundance of particular proteins, including increases in plastidial ATP synthase and some CBC enzymes, relieved potential bottlenecks and readjusted protein allocation between different processes. Despite reasonable overall agreement between changes in transcript and protein abundance (R² = 0.24), many proteins, including those in photosynthesis, changed independently of transcript abundance.</abstract><cop>England</cop><pub>American Society of Plant Biologists</pub><pmid>24894045</pmid><doi>10.1105/tpc.114.124537</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1040-4651
ispartof The Plant cell, 2014-06, Vol.26 (6), p.2310-2350
issn 1040-4651
1532-298X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4114937
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bioreactors
carbon dioxide fixation
Chlamydomonas reinhardtii
Enzyme substrates
Enzymes
Large-Scale Biology
LARGE-SCALE BIOLOGY ARTICLE
light intensity
Luminous intensity
metabolites
Photons
Photosynthesis
Plant cells
Plants
Protein metabolism
Starches
systems analysis
title Systems Analysis of the Response of Photosynthesis, Metabolism, and Growth to an Increase in Irradiance in the Photosynthetic Model Organism Chlamydomonas reinhardtii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systems%20Analysis%20of%20the%20Response%20of%20Photosynthesis,%20Metabolism,%20and%20Growth%20to%20an%20Increase%20in%20Irradiance%20in%20the%20Photosynthetic%20Model%20Organism%20Chlamydomonas%20reinhardtii&rft.jtitle=The%20Plant%20cell&rft.au=Mettler,%20Tabea&rft.date=2014-06-01&rft.volume=26&rft.issue=6&rft.spage=2310&rft.epage=2350&rft.pages=2310-2350&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.114.124537&rft_dat=%3Cjstor_pubme%3E43190684%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826594229&rft_id=info:pmid/24894045&rft_jstor_id=43190684&rfr_iscdi=true