Mechanism of the pH-Controlled Self-Assembly of Nanofibers from Peptide Amphiphiles

Stimuli-responsive, self-assembling nanomaterials hold a great promise to revolutionize medicine and technology. However, current discovery is slow and often serendipitous. Here we report a multiscale modeling study to elucidate the pH-controlled self-assembly of nanofibers from the peptide amphiphi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2014-07, Vol.118 (29), p.16272-16278
Hauptverfasser: Cote, Yoann, Fu, Iris W, Dobson, Eric T, Goldberger, Joshua E, Nguyen, Hung D, Shen, Jana K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16278
container_issue 29
container_start_page 16272
container_title Journal of physical chemistry. C
container_volume 118
creator Cote, Yoann
Fu, Iris W
Dobson, Eric T
Goldberger, Joshua E
Nguyen, Hung D
Shen, Jana K
description Stimuli-responsive, self-assembling nanomaterials hold a great promise to revolutionize medicine and technology. However, current discovery is slow and often serendipitous. Here we report a multiscale modeling study to elucidate the pH-controlled self-assembly of nanofibers from the peptide amphiphiles, palmitoyl-I-A3E4-NH2. The coarse-grained simulations revealed the formation of random-coil based spherical micelles at strong electrostatic repulsion. However, at weak or no electrostatic repulsion, the micelles merge into a nanofiber driven by the β-sheet formation between the peptide segments. The all-atom constant pH molecular dynamics revealed a cooperative transition between random coil and β-sheet in the pH range 6–7, matching the CD data. Interestingly, although the bulk pK a is more than one unit below the transition pH, consistent with the titration data, the highest pK a’s coincide with the transition pH, suggesting that the latter may be tuned by modulating the pK a’s of a few solvent-buried Glu side chains. Together, these data offer, to our best knowledge, the first multiresolution and quantitative view of the pH-dependent self-assembly of nanofibers. The novel protocols and insights gained are expected to advance the computer-aided design and discovery of pH-responsive nanomaterials.
doi_str_mv 10.1021/jp5048024
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4111372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826599218</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-7f2cb3fb2dce4e3f6f401979c91662a0d274c932528f55a4da83d875f174bc003</originalsourceid><addsrcrecordid>eNqFkV1r2zAUhkXp6Nd60T9QfFNYL9zq07JvCiGszaBbB9muhSwfLQ6y5Ur2IP9-CsnCBoWCQAI9PLznvAhdEXxHMCX360FgXmLKj9AZqRjNJRfi-PDm8hSdx7jGWDBM2Ak6pQKXFSmKM7T8Cmal-zZ2mbfZuIJsWORz34_BOwdNtgRn81mM0NVus0W-6d7btoYQMxt8l32HYWwbyGbdsGrTcRA_og9WuwiX-_sC_Xz8_GO-yJ9fnr7MZ8-5TnHHXFpqamZr2hjgwGxhOSaVrMw2GdW4oZKbNIGgpRVC80aXrCmlsETy2mDMLtDDzjtMdQfJklJrp4bQdjpslNet-v-nb1fql_-tOCGESZoEn_aC4F8niKPq2mjAOd2Dn6IiJS1EVVFSvo_KguJCFEwk9HaHmuBjDGAPiQhW277Uoa_EXv87woH8W1ACbnaANlGt_RT6tNE3RH8ASZqb0Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762065635</pqid></control><display><type>article</type><title>Mechanism of the pH-Controlled Self-Assembly of Nanofibers from Peptide Amphiphiles</title><source>ACS Publications</source><creator>Cote, Yoann ; Fu, Iris W ; Dobson, Eric T ; Goldberger, Joshua E ; Nguyen, Hung D ; Shen, Jana K</creator><creatorcontrib>Cote, Yoann ; Fu, Iris W ; Dobson, Eric T ; Goldberger, Joshua E ; Nguyen, Hung D ; Shen, Jana K</creatorcontrib><description>Stimuli-responsive, self-assembling nanomaterials hold a great promise to revolutionize medicine and technology. However, current discovery is slow and often serendipitous. Here we report a multiscale modeling study to elucidate the pH-controlled self-assembly of nanofibers from the peptide amphiphiles, palmitoyl-I-A3E4-NH2. The coarse-grained simulations revealed the formation of random-coil based spherical micelles at strong electrostatic repulsion. However, at weak or no electrostatic repulsion, the micelles merge into a nanofiber driven by the β-sheet formation between the peptide segments. The all-atom constant pH molecular dynamics revealed a cooperative transition between random coil and β-sheet in the pH range 6–7, matching the CD data. Interestingly, although the bulk pK a is more than one unit below the transition pH, consistent with the titration data, the highest pK a’s coincide with the transition pH, suggesting that the latter may be tuned by modulating the pK a’s of a few solvent-buried Glu side chains. Together, these data offer, to our best knowledge, the first multiresolution and quantitative view of the pH-dependent self-assembly of nanofibers. The novel protocols and insights gained are expected to advance the computer-aided design and discovery of pH-responsive nanomaterials.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp5048024</identifier><identifier>PMID: 25089166</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrostatics ; Formations ; Micelles ; Nanofibers ; Nanomaterials ; Peptides ; Self assembly</subject><ispartof>Journal of physical chemistry. C, 2014-07, Vol.118 (29), p.16272-16278</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>Copyright © 2014 American Chemical Society 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-7f2cb3fb2dce4e3f6f401979c91662a0d274c932528f55a4da83d875f174bc003</citedby><cites>FETCH-LOGICAL-a504t-7f2cb3fb2dce4e3f6f401979c91662a0d274c932528f55a4da83d875f174bc003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp5048024$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp5048024$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25089166$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cote, Yoann</creatorcontrib><creatorcontrib>Fu, Iris W</creatorcontrib><creatorcontrib>Dobson, Eric T</creatorcontrib><creatorcontrib>Goldberger, Joshua E</creatorcontrib><creatorcontrib>Nguyen, Hung D</creatorcontrib><creatorcontrib>Shen, Jana K</creatorcontrib><title>Mechanism of the pH-Controlled Self-Assembly of Nanofibers from Peptide Amphiphiles</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Stimuli-responsive, self-assembling nanomaterials hold a great promise to revolutionize medicine and technology. However, current discovery is slow and often serendipitous. Here we report a multiscale modeling study to elucidate the pH-controlled self-assembly of nanofibers from the peptide amphiphiles, palmitoyl-I-A3E4-NH2. The coarse-grained simulations revealed the formation of random-coil based spherical micelles at strong electrostatic repulsion. However, at weak or no electrostatic repulsion, the micelles merge into a nanofiber driven by the β-sheet formation between the peptide segments. The all-atom constant pH molecular dynamics revealed a cooperative transition between random coil and β-sheet in the pH range 6–7, matching the CD data. Interestingly, although the bulk pK a is more than one unit below the transition pH, consistent with the titration data, the highest pK a’s coincide with the transition pH, suggesting that the latter may be tuned by modulating the pK a’s of a few solvent-buried Glu side chains. Together, these data offer, to our best knowledge, the first multiresolution and quantitative view of the pH-dependent self-assembly of nanofibers. The novel protocols and insights gained are expected to advance the computer-aided design and discovery of pH-responsive nanomaterials.</description><subject>Electrostatics</subject><subject>Formations</subject><subject>Micelles</subject><subject>Nanofibers</subject><subject>Nanomaterials</subject><subject>Peptides</subject><subject>Self assembly</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNqFkV1r2zAUhkXp6Nd60T9QfFNYL9zq07JvCiGszaBbB9muhSwfLQ6y5Ur2IP9-CsnCBoWCQAI9PLznvAhdEXxHMCX360FgXmLKj9AZqRjNJRfi-PDm8hSdx7jGWDBM2Ak6pQKXFSmKM7T8Cmal-zZ2mbfZuIJsWORz34_BOwdNtgRn81mM0NVus0W-6d7btoYQMxt8l32HYWwbyGbdsGrTcRA_og9WuwiX-_sC_Xz8_GO-yJ9fnr7MZ8-5TnHHXFpqamZr2hjgwGxhOSaVrMw2GdW4oZKbNIGgpRVC80aXrCmlsETy2mDMLtDDzjtMdQfJklJrp4bQdjpslNet-v-nb1fql_-tOCGESZoEn_aC4F8niKPq2mjAOd2Dn6IiJS1EVVFSvo_KguJCFEwk9HaHmuBjDGAPiQhW277Uoa_EXv87woH8W1ACbnaANlGt_RT6tNE3RH8ASZqb0Q</recordid><startdate>20140724</startdate><enddate>20140724</enddate><creator>Cote, Yoann</creator><creator>Fu, Iris W</creator><creator>Dobson, Eric T</creator><creator>Goldberger, Joshua E</creator><creator>Nguyen, Hung D</creator><creator>Shen, Jana K</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140724</creationdate><title>Mechanism of the pH-Controlled Self-Assembly of Nanofibers from Peptide Amphiphiles</title><author>Cote, Yoann ; Fu, Iris W ; Dobson, Eric T ; Goldberger, Joshua E ; Nguyen, Hung D ; Shen, Jana K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-7f2cb3fb2dce4e3f6f401979c91662a0d274c932528f55a4da83d875f174bc003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Electrostatics</topic><topic>Formations</topic><topic>Micelles</topic><topic>Nanofibers</topic><topic>Nanomaterials</topic><topic>Peptides</topic><topic>Self assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cote, Yoann</creatorcontrib><creatorcontrib>Fu, Iris W</creatorcontrib><creatorcontrib>Dobson, Eric T</creatorcontrib><creatorcontrib>Goldberger, Joshua E</creatorcontrib><creatorcontrib>Nguyen, Hung D</creatorcontrib><creatorcontrib>Shen, Jana K</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cote, Yoann</au><au>Fu, Iris W</au><au>Dobson, Eric T</au><au>Goldberger, Joshua E</au><au>Nguyen, Hung D</au><au>Shen, Jana K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of the pH-Controlled Self-Assembly of Nanofibers from Peptide Amphiphiles</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-07-24</date><risdate>2014</risdate><volume>118</volume><issue>29</issue><spage>16272</spage><epage>16278</epage><pages>16272-16278</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Stimuli-responsive, self-assembling nanomaterials hold a great promise to revolutionize medicine and technology. However, current discovery is slow and often serendipitous. Here we report a multiscale modeling study to elucidate the pH-controlled self-assembly of nanofibers from the peptide amphiphiles, palmitoyl-I-A3E4-NH2. The coarse-grained simulations revealed the formation of random-coil based spherical micelles at strong electrostatic repulsion. However, at weak or no electrostatic repulsion, the micelles merge into a nanofiber driven by the β-sheet formation between the peptide segments. The all-atom constant pH molecular dynamics revealed a cooperative transition between random coil and β-sheet in the pH range 6–7, matching the CD data. Interestingly, although the bulk pK a is more than one unit below the transition pH, consistent with the titration data, the highest pK a’s coincide with the transition pH, suggesting that the latter may be tuned by modulating the pK a’s of a few solvent-buried Glu side chains. Together, these data offer, to our best knowledge, the first multiresolution and quantitative view of the pH-dependent self-assembly of nanofibers. The novel protocols and insights gained are expected to advance the computer-aided design and discovery of pH-responsive nanomaterials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25089166</pmid><doi>10.1021/jp5048024</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2014-07, Vol.118 (29), p.16272-16278
issn 1932-7447
1932-7455
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4111372
source ACS Publications
subjects Electrostatics
Formations
Micelles
Nanofibers
Nanomaterials
Peptides
Self assembly
title Mechanism of the pH-Controlled Self-Assembly of Nanofibers from Peptide Amphiphiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20the%20pH-Controlled%20Self-Assembly%20of%20Nanofibers%20from%20Peptide%20Amphiphiles&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Cote,%20Yoann&rft.date=2014-07-24&rft.volume=118&rft.issue=29&rft.spage=16272&rft.epage=16278&rft.pages=16272-16278&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp5048024&rft_dat=%3Cproquest_pubme%3E1826599218%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762065635&rft_id=info:pmid/25089166&rfr_iscdi=true