Characteristics and Prediction of RNA Structure
RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to tertiary structures. Real RNA secondary structures often have loc...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2014-01, Vol.2014 (2014), p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2014 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2014 |
creator | Li, Hengwu Zhu, Daming Zhang, Caiming Han, Huijian Crandall, Keith A. |
description | RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to tertiary structures. Real RNA secondary structures often have local instead of global optimization because of kinetic reasons. The performance of RNA structure prediction may be improved by considering dynamic and hierarchical folding mechanisms. This study is a novel report on RNA folding that accords with the golden mean characteristic based on the statistical analysis of the real RNA secondary structures of all 480 sequences from RNA STRAND, which are validated by NMR or X-ray. The length ratios of domains in these sequences are approximately 0.382L, 0.5L, 0.618L, and L, where L is the sequence length. These points are just the important golden sections of sequence. With this characteristic, an algorithm is designed to predict RNA hierarchical structures and simulate RNA folding by dynamically folding RNA structures according to the above golden section points. The sensitivity and number of predicted pseudoknots of our algorithm are better than those of the Mfold, HotKnots, McQfold, ProbKnot, and Lhw-Zhu algorithms. Experimental results reflect the folding rules of RNA from a new angle that is close to natural folding. |
doi_str_mv | 10.1155/2014/690340 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A427024069</galeid><sourcerecordid>A427024069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-90e1535a4afc53b3935efbde5a87cb6bfb9ce75c3047d476036ea574528e2df93</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBuAIgWjV9sQZFIkLAi07E38lF6TVCmilChAfZ8txxl1X2bjYCYh_j6OULXCpL7bkR69nPEXxBOE1ohDrCpCvZQOMw4PiuGLIVxI5PjycGTsqzlK6hrxqlNDIx8VRJRBB1uq4WG93Jho7UvRp9DaVZujKT5E6b0cfhjK48vOHTflljJMdp0inxSNn-kRnt_tJ8e3d26_b89Xlx_cX283lyvJajKsGCAUThhtnBWtZwwS5tiNhamVb2bq2saSEZcBVx5UEJskIxUVVU9W5hp0Ub5bcm6ndU2dpGKPp9U30exN_6WC8_vdm8Dt9FX5ojrlFEDngxW1ADN8nSqPe-2Sp781AYUoaJaJkEvLT91KRywJV4Uyf_0evwxSH_BOLwrpR_E5dmZ60H1zIJdo5VG94paDiIOcWXy3KxpBSJHfoDkHPw9XzcPUy3Kyf_f0hB_tnlBm8XMDOD5356e9Je7pgyoScOWDeQA2c_QZB_LIO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552818974</pqid></control><display><type>article</type><title>Characteristics and Prediction of RNA Structure</title><source>Wiley-Blackwell Open Access Collection</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Li, Hengwu ; Zhu, Daming ; Zhang, Caiming ; Han, Huijian ; Crandall, Keith A.</creator><contributor>De Rosa, Maria Cristina</contributor><creatorcontrib>Li, Hengwu ; Zhu, Daming ; Zhang, Caiming ; Han, Huijian ; Crandall, Keith A. ; De Rosa, Maria Cristina</creatorcontrib><description>RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to tertiary structures. Real RNA secondary structures often have local instead of global optimization because of kinetic reasons. The performance of RNA structure prediction may be improved by considering dynamic and hierarchical folding mechanisms. This study is a novel report on RNA folding that accords with the golden mean characteristic based on the statistical analysis of the real RNA secondary structures of all 480 sequences from RNA STRAND, which are validated by NMR or X-ray. The length ratios of domains in these sequences are approximately 0.382L, 0.5L, 0.618L, and L, where L is the sequence length. These points are just the important golden sections of sequence. With this characteristic, an algorithm is designed to predict RNA hierarchical structures and simulate RNA folding by dynamically folding RNA structures according to the above golden section points. The sensitivity and number of predicted pseudoknots of our algorithm are better than those of the Mfold, HotKnots, McQfold, ProbKnot, and Lhw-Zhu algorithms. Experimental results reflect the folding rules of RNA from a new angle that is close to natural folding.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2014/690340</identifier><identifier>PMID: 25110687</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Base Sequence ; Biology ; Computer science ; Databases, Nucleic Acid ; Dynamic programming ; Genetic algorithms ; Genomics ; Laboratories ; Methods ; Nucleic Acid Conformation ; Properties ; RNA ; RNA - chemistry ; RNA, Ribosomal, 16S - chemistry ; RNA, Transfer - chemistry ; Software engineering ; Statistical analysis ; Structure ; Studies</subject><ispartof>BioMed research international, 2014-01, Vol.2014 (2014), p.1-10</ispartof><rights>Copyright © 2014 Hengwu Li et al.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 Hengwu Li et al. Hengwu Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Hengwu Li et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c485t-90e1535a4afc53b3935efbde5a87cb6bfb9ce75c3047d476036ea574528e2df93</cites><orcidid>0000-0003-4159-598X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109605/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109605/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25110687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>De Rosa, Maria Cristina</contributor><creatorcontrib>Li, Hengwu</creatorcontrib><creatorcontrib>Zhu, Daming</creatorcontrib><creatorcontrib>Zhang, Caiming</creatorcontrib><creatorcontrib>Han, Huijian</creatorcontrib><creatorcontrib>Crandall, Keith A.</creatorcontrib><title>Characteristics and Prediction of RNA Structure</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to tertiary structures. Real RNA secondary structures often have local instead of global optimization because of kinetic reasons. The performance of RNA structure prediction may be improved by considering dynamic and hierarchical folding mechanisms. This study is a novel report on RNA folding that accords with the golden mean characteristic based on the statistical analysis of the real RNA secondary structures of all 480 sequences from RNA STRAND, which are validated by NMR or X-ray. The length ratios of domains in these sequences are approximately 0.382L, 0.5L, 0.618L, and L, where L is the sequence length. These points are just the important golden sections of sequence. With this characteristic, an algorithm is designed to predict RNA hierarchical structures and simulate RNA folding by dynamically folding RNA structures according to the above golden section points. The sensitivity and number of predicted pseudoknots of our algorithm are better than those of the Mfold, HotKnots, McQfold, ProbKnot, and Lhw-Zhu algorithms. Experimental results reflect the folding rules of RNA from a new angle that is close to natural folding.</description><subject>Algorithms</subject><subject>Base Sequence</subject><subject>Biology</subject><subject>Computer science</subject><subject>Databases, Nucleic Acid</subject><subject>Dynamic programming</subject><subject>Genetic algorithms</subject><subject>Genomics</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Nucleic Acid Conformation</subject><subject>Properties</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA, Ribosomal, 16S - chemistry</subject><subject>RNA, Transfer - chemistry</subject><subject>Software engineering</subject><subject>Statistical analysis</subject><subject>Structure</subject><subject>Studies</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0U1v1DAQBuAIgWjV9sQZFIkLAi07E38lF6TVCmilChAfZ8txxl1X2bjYCYh_j6OULXCpL7bkR69nPEXxBOE1ohDrCpCvZQOMw4PiuGLIVxI5PjycGTsqzlK6hrxqlNDIx8VRJRBB1uq4WG93Jho7UvRp9DaVZujKT5E6b0cfhjK48vOHTflljJMdp0inxSNn-kRnt_tJ8e3d26_b89Xlx_cX283lyvJajKsGCAUThhtnBWtZwwS5tiNhamVb2bq2saSEZcBVx5UEJskIxUVVU9W5hp0Ub5bcm6ndU2dpGKPp9U30exN_6WC8_vdm8Dt9FX5ojrlFEDngxW1ADN8nSqPe-2Sp781AYUoaJaJkEvLT91KRywJV4Uyf_0evwxSH_BOLwrpR_E5dmZ60H1zIJdo5VG94paDiIOcWXy3KxpBSJHfoDkHPw9XzcPUy3Kyf_f0hB_tnlBm8XMDOD5356e9Je7pgyoScOWDeQA2c_QZB_LIO</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Li, Hengwu</creator><creator>Zhu, Daming</creator><creator>Zhang, Caiming</creator><creator>Han, Huijian</creator><creator>Crandall, Keith A.</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7TM</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4159-598X</orcidid></search><sort><creationdate>20140101</creationdate><title>Characteristics and Prediction of RNA Structure</title><author>Li, Hengwu ; Zhu, Daming ; Zhang, Caiming ; Han, Huijian ; Crandall, Keith A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-90e1535a4afc53b3935efbde5a87cb6bfb9ce75c3047d476036ea574528e2df93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Base Sequence</topic><topic>Biology</topic><topic>Computer science</topic><topic>Databases, Nucleic Acid</topic><topic>Dynamic programming</topic><topic>Genetic algorithms</topic><topic>Genomics</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Nucleic Acid Conformation</topic><topic>Properties</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA, Ribosomal, 16S - chemistry</topic><topic>RNA, Transfer - chemistry</topic><topic>Software engineering</topic><topic>Statistical analysis</topic><topic>Structure</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hengwu</creatorcontrib><creatorcontrib>Zhu, Daming</creatorcontrib><creatorcontrib>Zhang, Caiming</creatorcontrib><creatorcontrib>Han, Huijian</creatorcontrib><creatorcontrib>Crandall, Keith A.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hengwu</au><au>Zhu, Daming</au><au>Zhang, Caiming</au><au>Han, Huijian</au><au>Crandall, Keith A.</au><au>De Rosa, Maria Cristina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics and Prediction of RNA Structure</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to tertiary structures. Real RNA secondary structures often have local instead of global optimization because of kinetic reasons. The performance of RNA structure prediction may be improved by considering dynamic and hierarchical folding mechanisms. This study is a novel report on RNA folding that accords with the golden mean characteristic based on the statistical analysis of the real RNA secondary structures of all 480 sequences from RNA STRAND, which are validated by NMR or X-ray. The length ratios of domains in these sequences are approximately 0.382L, 0.5L, 0.618L, and L, where L is the sequence length. These points are just the important golden sections of sequence. With this characteristic, an algorithm is designed to predict RNA hierarchical structures and simulate RNA folding by dynamically folding RNA structures according to the above golden section points. The sensitivity and number of predicted pseudoknots of our algorithm are better than those of the Mfold, HotKnots, McQfold, ProbKnot, and Lhw-Zhu algorithms. Experimental results reflect the folding rules of RNA from a new angle that is close to natural folding.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>25110687</pmid><doi>10.1155/2014/690340</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4159-598X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2014-01, Vol.2014 (2014), p.1-10 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109605 |
source | Wiley-Blackwell Open Access Collection; MEDLINE; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Algorithms Base Sequence Biology Computer science Databases, Nucleic Acid Dynamic programming Genetic algorithms Genomics Laboratories Methods Nucleic Acid Conformation Properties RNA RNA - chemistry RNA, Ribosomal, 16S - chemistry RNA, Transfer - chemistry Software engineering Statistical analysis Structure Studies |
title | Characteristics and Prediction of RNA Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A22%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20and%20Prediction%20of%20RNA%20Structure&rft.jtitle=BioMed%20research%20international&rft.au=Li,%20Hengwu&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2014/690340&rft_dat=%3Cgale_pubme%3EA427024069%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552818974&rft_id=info:pmid/25110687&rft_galeid=A427024069&rfr_iscdi=true |