high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells
It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach r...
Gespeichert in:
Veröffentlicht in: | Biomedical microdevices 2010-10, Vol.12 (5), p.855-863 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 863 |
---|---|
container_issue | 5 |
container_start_page | 855 |
container_title | Biomedical microdevices |
container_volume | 12 |
creator | Choi, Yoonsu Yuen, Carrie Maiti, Sourindra N Olivares, Simon Gibbons, Hillary Huls, Helen Raphael, Robert Killian, Thomas C Stark, Daniel J Lee, Dean A Torikai, Hiroki Monticello, Daniel Kelly, Susan S Kebriaei, Partow Champlin, Richard E Biswal, Sibani L Cooper, Laurence J. N |
description | It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 × 10⁸ primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19⁺ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy. |
doi_str_mv | 10.1007/s10544-010-9440-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762277195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-c459f5f755f838c9d09ad694cb6b3a6afb23ff6ac2c957384d37ddbda244caeb3</originalsourceid><addsrcrecordid>eNqFkstu1jAQhSMEoqXwAGzAYsMq4Gtsb5CqqlykSixo15bjS-LqTxxsp1KXvHkdpZTLAlb2eL459vFM07xE8B2CkL_PCDJKW4hgKymFLXnUHCPGcSu4QI_rngjeYsS7o-ZZztcQItl13dPmCEPGqcDwuPkxhmEEZUxxHcZlLWAKJkV3cKakuMSkS4gzsO4mGAdKBGGu53atgQZmDJNLwQA9lzC4GSRn3FJi2sDkbKhxqdoO5MWZ4IMJ5RZED8Z10jO4BMYdDvl588TrQ3Yv7teT5urj-eXZ5_bi66cvZ6cXrWGYltZQJj3znDEviDDSQqltJ6npu57oTvseE-87bbCRjBNBLeHW9lZjSo12PTlpPuy6y9pPzhpXneiDWlKYdLpVUQf1Z2YOoxrijaIISkhFFXh7L5Di99XloqaQNwt6dnHNincYc44k-z9JhaSMclLJN3-R13FNc_2HChGBBKSwQmiHamdyTs4_PBpBtQ2C2gdB1UFQ2yCoTfjV724fKn52vgJ4B3JNzYNLv27-l-rrvcjrqPSQQlZX3zBEBCKx2ZfkDpSry3U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743818040</pqid></control><display><type>article</type><title>high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Choi, Yoonsu ; Yuen, Carrie ; Maiti, Sourindra N ; Olivares, Simon ; Gibbons, Hillary ; Huls, Helen ; Raphael, Robert ; Killian, Thomas C ; Stark, Daniel J ; Lee, Dean A ; Torikai, Hiroki ; Monticello, Daniel ; Kelly, Susan S ; Kebriaei, Partow ; Champlin, Richard E ; Biswal, Sibani L ; Cooper, Laurence J. N</creator><creatorcontrib>Choi, Yoonsu ; Yuen, Carrie ; Maiti, Sourindra N ; Olivares, Simon ; Gibbons, Hillary ; Huls, Helen ; Raphael, Robert ; Killian, Thomas C ; Stark, Daniel J ; Lee, Dean A ; Torikai, Hiroki ; Monticello, Daniel ; Kelly, Susan S ; Kebriaei, Partow ; Champlin, Richard E ; Biswal, Sibani L ; Cooper, Laurence J. N</creatorcontrib><description>It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 × 10⁸ primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19⁺ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-010-9440-3</identifier><identifier>PMID: 20574820</identifier><identifier>CODEN: BMICFC</identifier><language>eng</language><publisher>Boston: Boston : Springer US</publisher><subject>Antigen-Presenting Cells - cytology ; Antigen-Presenting Cells - immunology ; Antigens, CD19 - metabolism ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Cell Line, Tumor ; Cell Proliferation ; Cellular biology ; Chimeric antigen receptor ; electroporation ; Electroporation - instrumentation ; Engineering ; Engineering Fluid Dynamics ; Genetics ; High throughput ; Humans ; Immunology ; messenger RNA ; Nanotechnology ; neoplasms ; Receptors, Antigen - genetics ; Receptors, Antigen - immunology ; Receptors, Antigen - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - immunology ; Recombinant Fusion Proteins - metabolism ; RNA, Messenger - genetics ; T-lymphocytes ; T-Lymphocytes - cytology ; T-Lymphocytes - immunology ; Toxicity ; Tumors</subject><ispartof>Biomedical microdevices, 2010-10, Vol.12 (5), p.855-863</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Springer Science+Business Media, LLC 2010 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-c459f5f755f838c9d09ad694cb6b3a6afb23ff6ac2c957384d37ddbda244caeb3</citedby><cites>FETCH-LOGICAL-c524t-c459f5f755f838c9d09ad694cb6b3a6afb23ff6ac2c957384d37ddbda244caeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-010-9440-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-010-9440-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20574820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Yoonsu</creatorcontrib><creatorcontrib>Yuen, Carrie</creatorcontrib><creatorcontrib>Maiti, Sourindra N</creatorcontrib><creatorcontrib>Olivares, Simon</creatorcontrib><creatorcontrib>Gibbons, Hillary</creatorcontrib><creatorcontrib>Huls, Helen</creatorcontrib><creatorcontrib>Raphael, Robert</creatorcontrib><creatorcontrib>Killian, Thomas C</creatorcontrib><creatorcontrib>Stark, Daniel J</creatorcontrib><creatorcontrib>Lee, Dean A</creatorcontrib><creatorcontrib>Torikai, Hiroki</creatorcontrib><creatorcontrib>Monticello, Daniel</creatorcontrib><creatorcontrib>Kelly, Susan S</creatorcontrib><creatorcontrib>Kebriaei, Partow</creatorcontrib><creatorcontrib>Champlin, Richard E</creatorcontrib><creatorcontrib>Biswal, Sibani L</creatorcontrib><creatorcontrib>Cooper, Laurence J. N</creatorcontrib><title>high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 × 10⁸ primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19⁺ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.</description><subject>Antigen-Presenting Cells - cytology</subject><subject>Antigen-Presenting Cells - immunology</subject><subject>Antigens, CD19 - metabolism</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cellular biology</subject><subject>Chimeric antigen receptor</subject><subject>electroporation</subject><subject>Electroporation - instrumentation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Genetics</subject><subject>High throughput</subject><subject>Humans</subject><subject>Immunology</subject><subject>messenger RNA</subject><subject>Nanotechnology</subject><subject>neoplasms</subject><subject>Receptors, Antigen - genetics</subject><subject>Receptors, Antigen - immunology</subject><subject>Receptors, Antigen - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - immunology</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>T-lymphocytes</subject><subject>T-Lymphocytes - cytology</subject><subject>T-Lymphocytes - immunology</subject><subject>Toxicity</subject><subject>Tumors</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkstu1jAQhSMEoqXwAGzAYsMq4Gtsb5CqqlykSixo15bjS-LqTxxsp1KXvHkdpZTLAlb2eL459vFM07xE8B2CkL_PCDJKW4hgKymFLXnUHCPGcSu4QI_rngjeYsS7o-ZZztcQItl13dPmCEPGqcDwuPkxhmEEZUxxHcZlLWAKJkV3cKakuMSkS4gzsO4mGAdKBGGu53atgQZmDJNLwQA9lzC4GSRn3FJi2sDkbKhxqdoO5MWZ4IMJ5RZED8Z10jO4BMYdDvl588TrQ3Yv7teT5urj-eXZ5_bi66cvZ6cXrWGYltZQJj3znDEviDDSQqltJ6npu57oTvseE-87bbCRjBNBLeHW9lZjSo12PTlpPuy6y9pPzhpXneiDWlKYdLpVUQf1Z2YOoxrijaIISkhFFXh7L5Di99XloqaQNwt6dnHNincYc44k-z9JhaSMclLJN3-R13FNc_2HChGBBKSwQmiHamdyTs4_PBpBtQ2C2gdB1UFQ2yCoTfjV724fKn52vgJ4B3JNzYNLv27-l-rrvcjrqPSQQlZX3zBEBCKx2ZfkDpSry3U</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Choi, Yoonsu</creator><creator>Yuen, Carrie</creator><creator>Maiti, Sourindra N</creator><creator>Olivares, Simon</creator><creator>Gibbons, Hillary</creator><creator>Huls, Helen</creator><creator>Raphael, Robert</creator><creator>Killian, Thomas C</creator><creator>Stark, Daniel J</creator><creator>Lee, Dean A</creator><creator>Torikai, Hiroki</creator><creator>Monticello, Daniel</creator><creator>Kelly, Susan S</creator><creator>Kebriaei, Partow</creator><creator>Champlin, Richard E</creator><creator>Biswal, Sibani L</creator><creator>Cooper, Laurence J. N</creator><general>Boston : Springer US</general><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20101001</creationdate><title>high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells</title><author>Choi, Yoonsu ; Yuen, Carrie ; Maiti, Sourindra N ; Olivares, Simon ; Gibbons, Hillary ; Huls, Helen ; Raphael, Robert ; Killian, Thomas C ; Stark, Daniel J ; Lee, Dean A ; Torikai, Hiroki ; Monticello, Daniel ; Kelly, Susan S ; Kebriaei, Partow ; Champlin, Richard E ; Biswal, Sibani L ; Cooper, Laurence J. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-c459f5f755f838c9d09ad694cb6b3a6afb23ff6ac2c957384d37ddbda244caeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antigen-Presenting Cells - cytology</topic><topic>Antigen-Presenting Cells - immunology</topic><topic>Antigens, CD19 - metabolism</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cellular biology</topic><topic>Chimeric antigen receptor</topic><topic>electroporation</topic><topic>Electroporation - instrumentation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Genetics</topic><topic>High throughput</topic><topic>Humans</topic><topic>Immunology</topic><topic>messenger RNA</topic><topic>Nanotechnology</topic><topic>neoplasms</topic><topic>Receptors, Antigen - genetics</topic><topic>Receptors, Antigen - immunology</topic><topic>Receptors, Antigen - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - immunology</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>T-lymphocytes</topic><topic>T-Lymphocytes - cytology</topic><topic>T-Lymphocytes - immunology</topic><topic>Toxicity</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Yoonsu</creatorcontrib><creatorcontrib>Yuen, Carrie</creatorcontrib><creatorcontrib>Maiti, Sourindra N</creatorcontrib><creatorcontrib>Olivares, Simon</creatorcontrib><creatorcontrib>Gibbons, Hillary</creatorcontrib><creatorcontrib>Huls, Helen</creatorcontrib><creatorcontrib>Raphael, Robert</creatorcontrib><creatorcontrib>Killian, Thomas C</creatorcontrib><creatorcontrib>Stark, Daniel J</creatorcontrib><creatorcontrib>Lee, Dean A</creatorcontrib><creatorcontrib>Torikai, Hiroki</creatorcontrib><creatorcontrib>Monticello, Daniel</creatorcontrib><creatorcontrib>Kelly, Susan S</creatorcontrib><creatorcontrib>Kebriaei, Partow</creatorcontrib><creatorcontrib>Champlin, Richard E</creatorcontrib><creatorcontrib>Biswal, Sibani L</creatorcontrib><creatorcontrib>Cooper, Laurence J. N</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Yoonsu</au><au>Yuen, Carrie</au><au>Maiti, Sourindra N</au><au>Olivares, Simon</au><au>Gibbons, Hillary</au><au>Huls, Helen</au><au>Raphael, Robert</au><au>Killian, Thomas C</au><au>Stark, Daniel J</au><au>Lee, Dean A</au><au>Torikai, Hiroki</au><au>Monticello, Daniel</au><au>Kelly, Susan S</au><au>Kebriaei, Partow</au><au>Champlin, Richard E</au><au>Biswal, Sibani L</au><au>Cooper, Laurence J. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>12</volume><issue>5</issue><spage>855</spage><epage>863</epage><pages>855-863</pages><issn>1387-2176</issn><eissn>1572-8781</eissn><coden>BMICFC</coden><abstract>It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 × 10⁸ primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19⁺ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.</abstract><cop>Boston</cop><pub>Boston : Springer US</pub><pmid>20574820</pmid><doi>10.1007/s10544-010-9440-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-2176 |
ispartof | Biomedical microdevices, 2010-10, Vol.12 (5), p.855-863 |
issn | 1387-2176 1572-8781 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109048 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Antigen-Presenting Cells - cytology Antigen-Presenting Cells - immunology Antigens, CD19 - metabolism Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Cell Line, Tumor Cell Proliferation Cellular biology Chimeric antigen receptor electroporation Electroporation - instrumentation Engineering Engineering Fluid Dynamics Genetics High throughput Humans Immunology messenger RNA Nanotechnology neoplasms Receptors, Antigen - genetics Receptors, Antigen - immunology Receptors, Antigen - metabolism Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - immunology Recombinant Fusion Proteins - metabolism RNA, Messenger - genetics T-lymphocytes T-Lymphocytes - cytology T-Lymphocytes - immunology Toxicity Tumors |
title | high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=high%20throughput%20microelectroporation%20device%20to%20introduce%20a%20chimeric%20antigen%20receptor%20to%20redirect%20the%20specificity%20of%20human%20T%20cells&rft.jtitle=Biomedical%20microdevices&rft.au=Choi,%20Yoonsu&rft.date=2010-10-01&rft.volume=12&rft.issue=5&rft.spage=855&rft.epage=863&rft.pages=855-863&rft.issn=1387-2176&rft.eissn=1572-8781&rft.coden=BMICFC&rft_id=info:doi/10.1007/s10544-010-9440-3&rft_dat=%3Cproquest_pubme%3E762277195%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743818040&rft_id=info:pmid/20574820&rfr_iscdi=true |