high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells

It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2010-10, Vol.12 (5), p.855-863
Hauptverfasser: Choi, Yoonsu, Yuen, Carrie, Maiti, Sourindra N, Olivares, Simon, Gibbons, Hillary, Huls, Helen, Raphael, Robert, Killian, Thomas C, Stark, Daniel J, Lee, Dean A, Torikai, Hiroki, Monticello, Daniel, Kelly, Susan S, Kebriaei, Partow, Champlin, Richard E, Biswal, Sibani L, Cooper, Laurence J. N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 863
container_issue 5
container_start_page 855
container_title Biomedical microdevices
container_volume 12
creator Choi, Yoonsu
Yuen, Carrie
Maiti, Sourindra N
Olivares, Simon
Gibbons, Hillary
Huls, Helen
Raphael, Robert
Killian, Thomas C
Stark, Daniel J
Lee, Dean A
Torikai, Hiroki
Monticello, Daniel
Kelly, Susan S
Kebriaei, Partow
Champlin, Richard E
Biswal, Sibani L
Cooper, Laurence J. N
description It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 × 10⁸ primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19⁺ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.
doi_str_mv 10.1007/s10544-010-9440-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762277195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-c459f5f755f838c9d09ad694cb6b3a6afb23ff6ac2c957384d37ddbda244caeb3</originalsourceid><addsrcrecordid>eNqFkstu1jAQhSMEoqXwAGzAYsMq4Gtsb5CqqlykSixo15bjS-LqTxxsp1KXvHkdpZTLAlb2eL459vFM07xE8B2CkL_PCDJKW4hgKymFLXnUHCPGcSu4QI_rngjeYsS7o-ZZztcQItl13dPmCEPGqcDwuPkxhmEEZUxxHcZlLWAKJkV3cKakuMSkS4gzsO4mGAdKBGGu53atgQZmDJNLwQA9lzC4GSRn3FJi2sDkbKhxqdoO5MWZ4IMJ5RZED8Z10jO4BMYdDvl588TrQ3Yv7teT5urj-eXZ5_bi66cvZ6cXrWGYltZQJj3znDEviDDSQqltJ6npu57oTvseE-87bbCRjBNBLeHW9lZjSo12PTlpPuy6y9pPzhpXneiDWlKYdLpVUQf1Z2YOoxrijaIISkhFFXh7L5Di99XloqaQNwt6dnHNincYc44k-z9JhaSMclLJN3-R13FNc_2HChGBBKSwQmiHamdyTs4_PBpBtQ2C2gdB1UFQ2yCoTfjV724fKn52vgJ4B3JNzYNLv27-l-rrvcjrqPSQQlZX3zBEBCKx2ZfkDpSry3U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743818040</pqid></control><display><type>article</type><title>high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Choi, Yoonsu ; Yuen, Carrie ; Maiti, Sourindra N ; Olivares, Simon ; Gibbons, Hillary ; Huls, Helen ; Raphael, Robert ; Killian, Thomas C ; Stark, Daniel J ; Lee, Dean A ; Torikai, Hiroki ; Monticello, Daniel ; Kelly, Susan S ; Kebriaei, Partow ; Champlin, Richard E ; Biswal, Sibani L ; Cooper, Laurence J. N</creator><creatorcontrib>Choi, Yoonsu ; Yuen, Carrie ; Maiti, Sourindra N ; Olivares, Simon ; Gibbons, Hillary ; Huls, Helen ; Raphael, Robert ; Killian, Thomas C ; Stark, Daniel J ; Lee, Dean A ; Torikai, Hiroki ; Monticello, Daniel ; Kelly, Susan S ; Kebriaei, Partow ; Champlin, Richard E ; Biswal, Sibani L ; Cooper, Laurence J. N</creatorcontrib><description>It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 × 10⁸ primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19⁺ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-010-9440-3</identifier><identifier>PMID: 20574820</identifier><identifier>CODEN: BMICFC</identifier><language>eng</language><publisher>Boston: Boston : Springer US</publisher><subject>Antigen-Presenting Cells - cytology ; Antigen-Presenting Cells - immunology ; Antigens, CD19 - metabolism ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Cell Line, Tumor ; Cell Proliferation ; Cellular biology ; Chimeric antigen receptor ; electroporation ; Electroporation - instrumentation ; Engineering ; Engineering Fluid Dynamics ; Genetics ; High throughput ; Humans ; Immunology ; messenger RNA ; Nanotechnology ; neoplasms ; Receptors, Antigen - genetics ; Receptors, Antigen - immunology ; Receptors, Antigen - metabolism ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - immunology ; Recombinant Fusion Proteins - metabolism ; RNA, Messenger - genetics ; T-lymphocytes ; T-Lymphocytes - cytology ; T-Lymphocytes - immunology ; Toxicity ; Tumors</subject><ispartof>Biomedical microdevices, 2010-10, Vol.12 (5), p.855-863</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Springer Science+Business Media, LLC 2010 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-c459f5f755f838c9d09ad694cb6b3a6afb23ff6ac2c957384d37ddbda244caeb3</citedby><cites>FETCH-LOGICAL-c524t-c459f5f755f838c9d09ad694cb6b3a6afb23ff6ac2c957384d37ddbda244caeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-010-9440-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-010-9440-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20574820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Yoonsu</creatorcontrib><creatorcontrib>Yuen, Carrie</creatorcontrib><creatorcontrib>Maiti, Sourindra N</creatorcontrib><creatorcontrib>Olivares, Simon</creatorcontrib><creatorcontrib>Gibbons, Hillary</creatorcontrib><creatorcontrib>Huls, Helen</creatorcontrib><creatorcontrib>Raphael, Robert</creatorcontrib><creatorcontrib>Killian, Thomas C</creatorcontrib><creatorcontrib>Stark, Daniel J</creatorcontrib><creatorcontrib>Lee, Dean A</creatorcontrib><creatorcontrib>Torikai, Hiroki</creatorcontrib><creatorcontrib>Monticello, Daniel</creatorcontrib><creatorcontrib>Kelly, Susan S</creatorcontrib><creatorcontrib>Kebriaei, Partow</creatorcontrib><creatorcontrib>Champlin, Richard E</creatorcontrib><creatorcontrib>Biswal, Sibani L</creatorcontrib><creatorcontrib>Cooper, Laurence J. N</creatorcontrib><title>high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 × 10⁸ primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19⁺ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.</description><subject>Antigen-Presenting Cells - cytology</subject><subject>Antigen-Presenting Cells - immunology</subject><subject>Antigens, CD19 - metabolism</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cellular biology</subject><subject>Chimeric antigen receptor</subject><subject>electroporation</subject><subject>Electroporation - instrumentation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Genetics</subject><subject>High throughput</subject><subject>Humans</subject><subject>Immunology</subject><subject>messenger RNA</subject><subject>Nanotechnology</subject><subject>neoplasms</subject><subject>Receptors, Antigen - genetics</subject><subject>Receptors, Antigen - immunology</subject><subject>Receptors, Antigen - metabolism</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - immunology</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>T-lymphocytes</subject><subject>T-Lymphocytes - cytology</subject><subject>T-Lymphocytes - immunology</subject><subject>Toxicity</subject><subject>Tumors</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkstu1jAQhSMEoqXwAGzAYsMq4Gtsb5CqqlykSixo15bjS-LqTxxsp1KXvHkdpZTLAlb2eL459vFM07xE8B2CkL_PCDJKW4hgKymFLXnUHCPGcSu4QI_rngjeYsS7o-ZZztcQItl13dPmCEPGqcDwuPkxhmEEZUxxHcZlLWAKJkV3cKakuMSkS4gzsO4mGAdKBGGu53atgQZmDJNLwQA9lzC4GSRn3FJi2sDkbKhxqdoO5MWZ4IMJ5RZED8Z10jO4BMYdDvl588TrQ3Yv7teT5urj-eXZ5_bi66cvZ6cXrWGYltZQJj3znDEviDDSQqltJ6npu57oTvseE-87bbCRjBNBLeHW9lZjSo12PTlpPuy6y9pPzhpXneiDWlKYdLpVUQf1Z2YOoxrijaIISkhFFXh7L5Di99XloqaQNwt6dnHNincYc44k-z9JhaSMclLJN3-R13FNc_2HChGBBKSwQmiHamdyTs4_PBpBtQ2C2gdB1UFQ2yCoTfjV724fKn52vgJ4B3JNzYNLv27-l-rrvcjrqPSQQlZX3zBEBCKx2ZfkDpSry3U</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Choi, Yoonsu</creator><creator>Yuen, Carrie</creator><creator>Maiti, Sourindra N</creator><creator>Olivares, Simon</creator><creator>Gibbons, Hillary</creator><creator>Huls, Helen</creator><creator>Raphael, Robert</creator><creator>Killian, Thomas C</creator><creator>Stark, Daniel J</creator><creator>Lee, Dean A</creator><creator>Torikai, Hiroki</creator><creator>Monticello, Daniel</creator><creator>Kelly, Susan S</creator><creator>Kebriaei, Partow</creator><creator>Champlin, Richard E</creator><creator>Biswal, Sibani L</creator><creator>Cooper, Laurence J. N</creator><general>Boston : Springer US</general><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20101001</creationdate><title>high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells</title><author>Choi, Yoonsu ; Yuen, Carrie ; Maiti, Sourindra N ; Olivares, Simon ; Gibbons, Hillary ; Huls, Helen ; Raphael, Robert ; Killian, Thomas C ; Stark, Daniel J ; Lee, Dean A ; Torikai, Hiroki ; Monticello, Daniel ; Kelly, Susan S ; Kebriaei, Partow ; Champlin, Richard E ; Biswal, Sibani L ; Cooper, Laurence J. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-c459f5f755f838c9d09ad694cb6b3a6afb23ff6ac2c957384d37ddbda244caeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Antigen-Presenting Cells - cytology</topic><topic>Antigen-Presenting Cells - immunology</topic><topic>Antigens, CD19 - metabolism</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cellular biology</topic><topic>Chimeric antigen receptor</topic><topic>electroporation</topic><topic>Electroporation - instrumentation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Genetics</topic><topic>High throughput</topic><topic>Humans</topic><topic>Immunology</topic><topic>messenger RNA</topic><topic>Nanotechnology</topic><topic>neoplasms</topic><topic>Receptors, Antigen - genetics</topic><topic>Receptors, Antigen - immunology</topic><topic>Receptors, Antigen - metabolism</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - immunology</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>T-lymphocytes</topic><topic>T-Lymphocytes - cytology</topic><topic>T-Lymphocytes - immunology</topic><topic>Toxicity</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Yoonsu</creatorcontrib><creatorcontrib>Yuen, Carrie</creatorcontrib><creatorcontrib>Maiti, Sourindra N</creatorcontrib><creatorcontrib>Olivares, Simon</creatorcontrib><creatorcontrib>Gibbons, Hillary</creatorcontrib><creatorcontrib>Huls, Helen</creatorcontrib><creatorcontrib>Raphael, Robert</creatorcontrib><creatorcontrib>Killian, Thomas C</creatorcontrib><creatorcontrib>Stark, Daniel J</creatorcontrib><creatorcontrib>Lee, Dean A</creatorcontrib><creatorcontrib>Torikai, Hiroki</creatorcontrib><creatorcontrib>Monticello, Daniel</creatorcontrib><creatorcontrib>Kelly, Susan S</creatorcontrib><creatorcontrib>Kebriaei, Partow</creatorcontrib><creatorcontrib>Champlin, Richard E</creatorcontrib><creatorcontrib>Biswal, Sibani L</creatorcontrib><creatorcontrib>Cooper, Laurence J. N</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Yoonsu</au><au>Yuen, Carrie</au><au>Maiti, Sourindra N</au><au>Olivares, Simon</au><au>Gibbons, Hillary</au><au>Huls, Helen</au><au>Raphael, Robert</au><au>Killian, Thomas C</au><au>Stark, Daniel J</au><au>Lee, Dean A</au><au>Torikai, Hiroki</au><au>Monticello, Daniel</au><au>Kelly, Susan S</au><au>Kebriaei, Partow</au><au>Champlin, Richard E</au><au>Biswal, Sibani L</au><au>Cooper, Laurence J. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>12</volume><issue>5</issue><spage>855</spage><epage>863</epage><pages>855-863</pages><issn>1387-2176</issn><eissn>1572-8781</eissn><coden>BMICFC</coden><abstract>It has been demonstrated that a chimeric antigen receptor (CAR) can directly recognize the CD19 molecule expressed on the cell surface of B-cell malignancies independent of major histocompatibility complex (MHC). Although T-cell therapy of tumors using CD19-specific CAR is promising, this approach relies on using expression vectors that stably integrate the CAR into T-cell chromosomes. To circumvent the potential genotoxicity that may occur from expressing integrating transgenes, we have expressed the CD19-specific CAR transgene from mRNA using a high throughput microelectroporation device. This research was accomplished using a microelectroporator to achieve efficient and high throughput non-viral gene transfer of in vitro transcribed CAR mRNA into human T cells that had been numerically expanded ex vivo. Electro-transfer of mRNA avoids the potential genotoxicity associated with vector and transgene integration and the high throughput capacity overcomes the expected transient CAR expression, as repeated rounds of electroporation can replace T cells that have lost transgene expression. We fabricated and tested a high throughput microelectroporator that can electroporate a stream of 2 × 10⁸ primary T cells within 10 min. After electroporation, up to 80% of the passaged T cells expressed the CD19-specific CAR. Video time-lapse microscopy (VTLM) demonstrated the redirected effector function of the genetically manipulated T cells to specifically lyse CD19⁺ tumor cells. Our biomedical microdevice, in which T cells are transiently and safely modified to be tumor-specific and then can be re-infused, offers a method for redirecting T-cell specificity, that has implications for the development of adoptive immunotherapy.</abstract><cop>Boston</cop><pub>Boston : Springer US</pub><pmid>20574820</pmid><doi>10.1007/s10544-010-9440-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1387-2176
ispartof Biomedical microdevices, 2010-10, Vol.12 (5), p.855-863
issn 1387-2176
1572-8781
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4109048
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Antigen-Presenting Cells - cytology
Antigen-Presenting Cells - immunology
Antigens, CD19 - metabolism
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Cell Line, Tumor
Cell Proliferation
Cellular biology
Chimeric antigen receptor
electroporation
Electroporation - instrumentation
Engineering
Engineering Fluid Dynamics
Genetics
High throughput
Humans
Immunology
messenger RNA
Nanotechnology
neoplasms
Receptors, Antigen - genetics
Receptors, Antigen - immunology
Receptors, Antigen - metabolism
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - immunology
Recombinant Fusion Proteins - metabolism
RNA, Messenger - genetics
T-lymphocytes
T-Lymphocytes - cytology
T-Lymphocytes - immunology
Toxicity
Tumors
title high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=high%20throughput%20microelectroporation%20device%20to%20introduce%20a%20chimeric%20antigen%20receptor%20to%20redirect%20the%20specificity%20of%20human%20T%20cells&rft.jtitle=Biomedical%20microdevices&rft.au=Choi,%20Yoonsu&rft.date=2010-10-01&rft.volume=12&rft.issue=5&rft.spage=855&rft.epage=863&rft.pages=855-863&rft.issn=1387-2176&rft.eissn=1572-8781&rft.coden=BMICFC&rft_id=info:doi/10.1007/s10544-010-9440-3&rft_dat=%3Cproquest_pubme%3E762277195%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743818040&rft_id=info:pmid/20574820&rfr_iscdi=true