Blind prediction performance of RosettaAntibody 3.0: Grafting, relaxation, kinematic loop modeling, and full CDR optimization

ABSTRACT Antibody Modeling Assessment II (AMA‐II) provided an opportunity to benchmark RosettaAntibody on a set of 11 unpublished antibody structures. RosettaAntibody produced accurate, physically realistic models, with all framework regions and 42 of the 55 non‐H3 CDR loops predicted to under an Ån...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2014-08, Vol.82 (8), p.1611-1623
Hauptverfasser: Weitzner, Brian D., Kuroda, Daisuke, Marze, Nicholas, Xu, Jianqing, Gray, Jeffrey J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1623
container_issue 8
container_start_page 1611
container_title Proteins, structure, function, and bioinformatics
container_volume 82
creator Weitzner, Brian D.
Kuroda, Daisuke
Marze, Nicholas
Xu, Jianqing
Gray, Jeffrey J.
description ABSTRACT Antibody Modeling Assessment II (AMA‐II) provided an opportunity to benchmark RosettaAntibody on a set of 11 unpublished antibody structures. RosettaAntibody produced accurate, physically realistic models, with all framework regions and 42 of the 55 non‐H3 CDR loops predicted to under an Ångström. The performance is notable when modeling H3 on a homology framework, where RosettaAntibody produced the best model among all participants for four of the 11 targets, two of which were predicted with sub‐Ångström accuracy. To improve RosettaAntibody, we pursued the causes of model errors. The most common limitation was template unavailability, underscoring the need for more antibody structures and/or better de novo loop methods. In some cases, better templates could have been found by considering residues outside of the CDRs. De novo CDR H3 modeling remains challenging at long loop lengths, but constraining the C‐terminal end of H3 to a kinked conformation allows near‐native conformations to be sampled more frequently. We also found that incorrect VL–VH orientations caused models with low H3 RMSDs to score poorly, suggesting that correct VL–VH orientations will improve discrimination between near‐native and incorrect conformations. These observations will guide the future development of RosettaAntibody. Proteins 2014; 82:1611–1623. © 2014 Wiley Periodicals, Inc.
doi_str_mv 10.1002/prot.24534
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4107143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1554954881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6554-d9e3f3fd71d1bfa62aff26f6f1b1810e61b7fc400d8d8f0b2783c826387508923</originalsourceid><addsrcrecordid>eNqNkk1v0zAcxi0EYmVw4QMgS1zQtBQ7jl_CAWkr0CJNjFVD7GY5iT28OXZwEliR-O647VYBB8TJlvx7nv-LHwCeYjTFCOUvuxiGaV5QUtwDE4xKniFMivtggoTgGaGC7oFHfX-FEGIlYQ_BXoJxKQSegJ_HzvoGdlE3th5s8LDT0YTYKl9rGAxchl4Pgzryg61Cs4Jkil7BeVRmsP7yEEbt1I1aCw_htfW6TfcauhA62IZGuw2kUgUzOgdnb5YwdINt7Y-N5jF4YJTr9ZPbcx98evf2fLbITk7n72dHJ1nNKC2yptTEENNw3ODKKJYrY3JmmMEVFhhphitu6gKhRjTCoCrngtQiZ0RwikSZk33weuvbjVWrm1r7ISonu2hbFVcyKCv_fPH2i7wM32SBEccFSQYvbg1i-DrqfpCt7WvtnPI6jL3Eqc2SFmml_4EWnOaUI5HQ53-hV2GMPm1iTbFUGPEyUQdbqo6h76M2u74xkusAyHUA5CYACX72-6Q79O7HE4C3wHfr9OofVvLj8vT8zjTbamw_6JudRsVryTjhVH7-MJcXOVmcXZwtZEl-Adu8y7s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546143079</pqid></control><display><type>article</type><title>Blind prediction performance of RosettaAntibody 3.0: Grafting, relaxation, kinematic loop modeling, and full CDR optimization</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Weitzner, Brian D. ; Kuroda, Daisuke ; Marze, Nicholas ; Xu, Jianqing ; Gray, Jeffrey J.</creator><creatorcontrib>Weitzner, Brian D. ; Kuroda, Daisuke ; Marze, Nicholas ; Xu, Jianqing ; Gray, Jeffrey J.</creatorcontrib><description>ABSTRACT Antibody Modeling Assessment II (AMA‐II) provided an opportunity to benchmark RosettaAntibody on a set of 11 unpublished antibody structures. RosettaAntibody produced accurate, physically realistic models, with all framework regions and 42 of the 55 non‐H3 CDR loops predicted to under an Ångström. The performance is notable when modeling H3 on a homology framework, where RosettaAntibody produced the best model among all participants for four of the 11 targets, two of which were predicted with sub‐Ångström accuracy. To improve RosettaAntibody, we pursued the causes of model errors. The most common limitation was template unavailability, underscoring the need for more antibody structures and/or better de novo loop methods. In some cases, better templates could have been found by considering residues outside of the CDRs. De novo CDR H3 modeling remains challenging at long loop lengths, but constraining the C‐terminal end of H3 to a kinked conformation allows near‐native conformations to be sampled more frequently. We also found that incorrect VL–VH orientations caused models with low H3 RMSDs to score poorly, suggesting that correct VL–VH orientations will improve discrimination between near‐native and incorrect conformations. These observations will guide the future development of RosettaAntibody. Proteins 2014; 82:1611–1623. © 2014 Wiley Periodicals, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.24534</identifier><identifier>PMID: 24519881</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Animals ; antigen-binding site ; Biomechanical Phenomena ; canonical structures ; Complementarity Determining Regions - chemistry ; homology modeling ; Humans ; immunoglobulin ; Immunoglobulin Heavy Chains - chemistry ; Immunoglobulin Light Chains - chemistry ; Immunoglobulins - chemistry ; loop prediction ; Models, Molecular ; Protein Conformation ; Rosetta ; Software</subject><ispartof>Proteins, structure, function, and bioinformatics, 2014-08, Vol.82 (8), p.1611-1623</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6554-d9e3f3fd71d1bfa62aff26f6f1b1810e61b7fc400d8d8f0b2783c826387508923</citedby><cites>FETCH-LOGICAL-c6554-d9e3f3fd71d1bfa62aff26f6f1b1810e61b7fc400d8d8f0b2783c826387508923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.24534$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.24534$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24519881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weitzner, Brian D.</creatorcontrib><creatorcontrib>Kuroda, Daisuke</creatorcontrib><creatorcontrib>Marze, Nicholas</creatorcontrib><creatorcontrib>Xu, Jianqing</creatorcontrib><creatorcontrib>Gray, Jeffrey J.</creatorcontrib><title>Blind prediction performance of RosettaAntibody 3.0: Grafting, relaxation, kinematic loop modeling, and full CDR optimization</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>ABSTRACT Antibody Modeling Assessment II (AMA‐II) provided an opportunity to benchmark RosettaAntibody on a set of 11 unpublished antibody structures. RosettaAntibody produced accurate, physically realistic models, with all framework regions and 42 of the 55 non‐H3 CDR loops predicted to under an Ångström. The performance is notable when modeling H3 on a homology framework, where RosettaAntibody produced the best model among all participants for four of the 11 targets, two of which were predicted with sub‐Ångström accuracy. To improve RosettaAntibody, we pursued the causes of model errors. The most common limitation was template unavailability, underscoring the need for more antibody structures and/or better de novo loop methods. In some cases, better templates could have been found by considering residues outside of the CDRs. De novo CDR H3 modeling remains challenging at long loop lengths, but constraining the C‐terminal end of H3 to a kinked conformation allows near‐native conformations to be sampled more frequently. We also found that incorrect VL–VH orientations caused models with low H3 RMSDs to score poorly, suggesting that correct VL–VH orientations will improve discrimination between near‐native and incorrect conformations. These observations will guide the future development of RosettaAntibody. Proteins 2014; 82:1611–1623. © 2014 Wiley Periodicals, Inc.</description><subject>Algorithms</subject><subject>Animals</subject><subject>antigen-binding site</subject><subject>Biomechanical Phenomena</subject><subject>canonical structures</subject><subject>Complementarity Determining Regions - chemistry</subject><subject>homology modeling</subject><subject>Humans</subject><subject>immunoglobulin</subject><subject>Immunoglobulin Heavy Chains - chemistry</subject><subject>Immunoglobulin Light Chains - chemistry</subject><subject>Immunoglobulins - chemistry</subject><subject>loop prediction</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>Rosetta</subject><subject>Software</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v0zAcxi0EYmVw4QMgS1zQtBQ7jl_CAWkr0CJNjFVD7GY5iT28OXZwEliR-O647VYBB8TJlvx7nv-LHwCeYjTFCOUvuxiGaV5QUtwDE4xKniFMivtggoTgGaGC7oFHfX-FEGIlYQ_BXoJxKQSegJ_HzvoGdlE3th5s8LDT0YTYKl9rGAxchl4Pgzryg61Cs4Jkil7BeVRmsP7yEEbt1I1aCw_htfW6TfcauhA62IZGuw2kUgUzOgdnb5YwdINt7Y-N5jF4YJTr9ZPbcx98evf2fLbITk7n72dHJ1nNKC2yptTEENNw3ODKKJYrY3JmmMEVFhhphitu6gKhRjTCoCrngtQiZ0RwikSZk33weuvbjVWrm1r7ISonu2hbFVcyKCv_fPH2i7wM32SBEccFSQYvbg1i-DrqfpCt7WvtnPI6jL3Eqc2SFmml_4EWnOaUI5HQ53-hV2GMPm1iTbFUGPEyUQdbqo6h76M2u74xkusAyHUA5CYACX72-6Q79O7HE4C3wHfr9OofVvLj8vT8zjTbamw_6JudRsVryTjhVH7-MJcXOVmcXZwtZEl-Adu8y7s</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Weitzner, Brian D.</creator><creator>Kuroda, Daisuke</creator><creator>Marze, Nicholas</creator><creator>Xu, Jianqing</creator><creator>Gray, Jeffrey J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201408</creationdate><title>Blind prediction performance of RosettaAntibody 3.0: Grafting, relaxation, kinematic loop modeling, and full CDR optimization</title><author>Weitzner, Brian D. ; Kuroda, Daisuke ; Marze, Nicholas ; Xu, Jianqing ; Gray, Jeffrey J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6554-d9e3f3fd71d1bfa62aff26f6f1b1810e61b7fc400d8d8f0b2783c826387508923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>antigen-binding site</topic><topic>Biomechanical Phenomena</topic><topic>canonical structures</topic><topic>Complementarity Determining Regions - chemistry</topic><topic>homology modeling</topic><topic>Humans</topic><topic>immunoglobulin</topic><topic>Immunoglobulin Heavy Chains - chemistry</topic><topic>Immunoglobulin Light Chains - chemistry</topic><topic>Immunoglobulins - chemistry</topic><topic>loop prediction</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>Rosetta</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weitzner, Brian D.</creatorcontrib><creatorcontrib>Kuroda, Daisuke</creatorcontrib><creatorcontrib>Marze, Nicholas</creatorcontrib><creatorcontrib>Xu, Jianqing</creatorcontrib><creatorcontrib>Gray, Jeffrey J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weitzner, Brian D.</au><au>Kuroda, Daisuke</au><au>Marze, Nicholas</au><au>Xu, Jianqing</au><au>Gray, Jeffrey J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind prediction performance of RosettaAntibody 3.0: Grafting, relaxation, kinematic loop modeling, and full CDR optimization</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2014-08</date><risdate>2014</risdate><volume>82</volume><issue>8</issue><spage>1611</spage><epage>1623</epage><pages>1611-1623</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>ABSTRACT Antibody Modeling Assessment II (AMA‐II) provided an opportunity to benchmark RosettaAntibody on a set of 11 unpublished antibody structures. RosettaAntibody produced accurate, physically realistic models, with all framework regions and 42 of the 55 non‐H3 CDR loops predicted to under an Ångström. The performance is notable when modeling H3 on a homology framework, where RosettaAntibody produced the best model among all participants for four of the 11 targets, two of which were predicted with sub‐Ångström accuracy. To improve RosettaAntibody, we pursued the causes of model errors. The most common limitation was template unavailability, underscoring the need for more antibody structures and/or better de novo loop methods. In some cases, better templates could have been found by considering residues outside of the CDRs. De novo CDR H3 modeling remains challenging at long loop lengths, but constraining the C‐terminal end of H3 to a kinked conformation allows near‐native conformations to be sampled more frequently. We also found that incorrect VL–VH orientations caused models with low H3 RMSDs to score poorly, suggesting that correct VL–VH orientations will improve discrimination between near‐native and incorrect conformations. These observations will guide the future development of RosettaAntibody. Proteins 2014; 82:1611–1623. © 2014 Wiley Periodicals, Inc.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24519881</pmid><doi>10.1002/prot.24534</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2014-08, Vol.82 (8), p.1611-1623
issn 0887-3585
1097-0134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4107143
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Animals
antigen-binding site
Biomechanical Phenomena
canonical structures
Complementarity Determining Regions - chemistry
homology modeling
Humans
immunoglobulin
Immunoglobulin Heavy Chains - chemistry
Immunoglobulin Light Chains - chemistry
Immunoglobulins - chemistry
loop prediction
Models, Molecular
Protein Conformation
Rosetta
Software
title Blind prediction performance of RosettaAntibody 3.0: Grafting, relaxation, kinematic loop modeling, and full CDR optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20prediction%20performance%20of%20RosettaAntibody%203.0:%20Grafting,%20relaxation,%20kinematic%20loop%20modeling,%20and%20full%20CDR%20optimization&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Weitzner,%20Brian%20D.&rft.date=2014-08&rft.volume=82&rft.issue=8&rft.spage=1611&rft.epage=1623&rft.pages=1611-1623&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.24534&rft_dat=%3Cproquest_pubme%3E1554954881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546143079&rft_id=info:pmid/24519881&rfr_iscdi=true