The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells

A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2014-07, Vol.4 (1), p.5695-5695, Article 5695
Hauptverfasser: Philippa, Bronson, Stolterfoht, Martin, Burn, Paul L., Juška, Gytis, Meredith, Paul, White, Ronald D., Pivrikas, Almantas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5695
container_issue 1
container_start_page 5695
container_title Scientific reports
container_volume 4
creator Philippa, Bronson
Stolterfoht, Martin
Burn, Paul L.
Juška, Gytis
Meredith, Paul
White, Ronald D.
Pivrikas, Almantas
description A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states.
doi_str_mv 10.1038/srep05695
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4105785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1548632243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-695a9258448e66c9446f6a4a666b8b6dc86d8aef33656b1034cc4e145c6a37ba3</originalsourceid><addsrcrecordid>eNplkUFr3DAQhUVJaEKyh_6BIuglCTiRbWksXwoltGkgkMv2WISsHe8q2JY7sgv776Ow6bJNdJHQ-3jzZoaxT7m4zkWpbyLhKBTU6gM7LYRUWVEWxdHB-4QtYnwS6aiilnn9kZ0USshKaDhlv5cb5L4frZt4aPkmTNxtLK2RO0vkkXgfGt_5acvDwMekBzcT4TDxLsSIkfv0Hbptj5Q1NuKKx9BZ4g67Lp6z49Z2ERev9xn79eP78vZn9vB4d3_77SFzKciUpfC2LpSWUiOAq6WEFqy0ANDoBlZOw0pbbMsSFDSpa-mcxFwqB7asGluesa8733Fuely5FI9sZ0byvaWtCdab_5XBb8w6_DUyF6rSKhlcvBpQ-DNjnEzv40sLdsAwR5MrqSHNUpYJ_fIGfQozDak9k-taiwoqKBJ1uaMcpTERtvswuTAvezP7vSX282H6PflvSwm42gExScMa6aDkO7dnlZyifw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898076762</pqid></control><display><type>article</type><title>The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Philippa, Bronson ; Stolterfoht, Martin ; Burn, Paul L. ; Juška, Gytis ; Meredith, Paul ; White, Ronald D. ; Pivrikas, Almantas</creator><creatorcontrib>Philippa, Bronson ; Stolterfoht, Martin ; Burn, Paul L. ; Juška, Gytis ; Meredith, Paul ; White, Ronald D. ; Pivrikas, Almantas</creatorcontrib><description>A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep05695</identifier><identifier>PMID: 25047086</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; 639/925/927/1007 ; Energy ; Humanities and Social Sciences ; Mobility ; multidisciplinary ; Photovoltaic cells ; Polymers ; Science ; Solar cells</subject><ispartof>Scientific reports, 2014-07, Vol.4 (1), p.5695-5695, Article 5695</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Jul 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-695a9258448e66c9446f6a4a666b8b6dc86d8aef33656b1034cc4e145c6a37ba3</citedby><cites>FETCH-LOGICAL-c504t-695a9258448e66c9446f6a4a666b8b6dc86d8aef33656b1034cc4e145c6a37ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105785/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105785/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25047086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Philippa, Bronson</creatorcontrib><creatorcontrib>Stolterfoht, Martin</creatorcontrib><creatorcontrib>Burn, Paul L.</creatorcontrib><creatorcontrib>Juška, Gytis</creatorcontrib><creatorcontrib>Meredith, Paul</creatorcontrib><creatorcontrib>White, Ronald D.</creatorcontrib><creatorcontrib>Pivrikas, Almantas</creatorcontrib><title>The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states.</description><subject>639/301/119/995</subject><subject>639/925/927/1007</subject><subject>Energy</subject><subject>Humanities and Social Sciences</subject><subject>Mobility</subject><subject>multidisciplinary</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Science</subject><subject>Solar cells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNplkUFr3DAQhUVJaEKyh_6BIuglCTiRbWksXwoltGkgkMv2WISsHe8q2JY7sgv776Ow6bJNdJHQ-3jzZoaxT7m4zkWpbyLhKBTU6gM7LYRUWVEWxdHB-4QtYnwS6aiilnn9kZ0USshKaDhlv5cb5L4frZt4aPkmTNxtLK2RO0vkkXgfGt_5acvDwMekBzcT4TDxLsSIkfv0Hbptj5Q1NuKKx9BZ4g67Lp6z49Z2ERev9xn79eP78vZn9vB4d3_77SFzKciUpfC2LpSWUiOAq6WEFqy0ANDoBlZOw0pbbMsSFDSpa-mcxFwqB7asGluesa8733Fuely5FI9sZ0byvaWtCdab_5XBb8w6_DUyF6rSKhlcvBpQ-DNjnEzv40sLdsAwR5MrqSHNUpYJ_fIGfQozDak9k-taiwoqKBJ1uaMcpTERtvswuTAvezP7vSX282H6PflvSwm42gExScMa6aDkO7dnlZyifw</recordid><startdate>20140722</startdate><enddate>20140722</enddate><creator>Philippa, Bronson</creator><creator>Stolterfoht, Martin</creator><creator>Burn, Paul L.</creator><creator>Juška, Gytis</creator><creator>Meredith, Paul</creator><creator>White, Ronald D.</creator><creator>Pivrikas, Almantas</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140722</creationdate><title>The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells</title><author>Philippa, Bronson ; Stolterfoht, Martin ; Burn, Paul L. ; Juška, Gytis ; Meredith, Paul ; White, Ronald D. ; Pivrikas, Almantas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-695a9258448e66c9446f6a4a666b8b6dc86d8aef33656b1034cc4e145c6a37ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/119/995</topic><topic>639/925/927/1007</topic><topic>Energy</topic><topic>Humanities and Social Sciences</topic><topic>Mobility</topic><topic>multidisciplinary</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Science</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Philippa, Bronson</creatorcontrib><creatorcontrib>Stolterfoht, Martin</creatorcontrib><creatorcontrib>Burn, Paul L.</creatorcontrib><creatorcontrib>Juška, Gytis</creatorcontrib><creatorcontrib>Meredith, Paul</creatorcontrib><creatorcontrib>White, Ronald D.</creatorcontrib><creatorcontrib>Pivrikas, Almantas</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Philippa, Bronson</au><au>Stolterfoht, Martin</au><au>Burn, Paul L.</au><au>Juška, Gytis</au><au>Meredith, Paul</au><au>White, Ronald D.</au><au>Pivrikas, Almantas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-07-22</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>5695</spage><epage>5695</epage><pages>5695-5695</pages><artnum>5695</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25047086</pmid><doi>10.1038/srep05695</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2014-07, Vol.4 (1), p.5695-5695, Article 5695
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4105785
source Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/301/119/995
639/925/927/1007
Energy
Humanities and Social Sciences
Mobility
multidisciplinary
Photovoltaic cells
Polymers
Science
Solar cells
title The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T12%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20hot%20charge%20carrier%20mobility%20on%20photocurrent%20losses%20in%20polymer-based%20solar%20cells&rft.jtitle=Scientific%20reports&rft.au=Philippa,%20Bronson&rft.date=2014-07-22&rft.volume=4&rft.issue=1&rft.spage=5695&rft.epage=5695&rft.pages=5695-5695&rft.artnum=5695&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep05695&rft_dat=%3Cproquest_pubme%3E1548632243%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898076762&rft_id=info:pmid/25047086&rfr_iscdi=true