Low Copy Numbers of DC‐SIGN in Cell Membrane Microdomains: Implications for Structure and Function
Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the oc...
Gespeichert in:
Veröffentlicht in: | Traffic (Copenhagen, Denmark) Denmark), 2014-02, Vol.15 (2), p.179-196 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | 2 |
container_start_page | 179 |
container_title | Traffic (Copenhagen, Denmark) |
container_volume | 15 |
creator | Liu, Ping Wang, Xiang Itano, Michelle S. Neumann, Aaron K. de Silva, Aravinda M. Jacobson, Ken Thompson, Nancy L. |
description | Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC‐SIGN, a C‐type lectin, in membrane microdomains. DC‐SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC‐SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1 µm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3 T3 cells contains only 4–8 molecules of DC‐SIGN, consistent with our preliminary super‐resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (∼50 nm) pathogen, dengue virus, leading to infection of host cells.
We developed a single‐molecule imaging method, based on total internal reflection fluorescence microscopy, to quantify the number of DC‐SIGN (a C‐type lectin) molecules in its cell‐surface microdomains. Our results reveal that the majority of cell‐surface microdomains contain fewer than 20 DC‐SIGN molecules. By employing immunofluorescence staining, confocal and super‐resolution imaging, we further show that those small membrane DC‐SIGN assemblies are sufficient to capture the small‐sized pathogen dengue viruses, leading to efficient internalization of the viruses and productive infection. |
doi_str_mv | 10.1111/tra.12138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4104803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490710281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-55bc62b9926494d93552823f41959ffb87983cec9c8a455c22bce644935822423</originalsourceid><addsrcrecordid>eNqFkc9qFTEYxYNY7B9d-AIScGMX0-bvJHEhlNHWC7cVbF2HTG5GU2aS22TGcnc-go_gs_RR-iTm9taigpjNFzg_Dt93DgDPMTrA5R2OyRxggql8BHZwjVCFJGePy58qWSmC1TbYzfkSIUQ4Y0_ANmG0aBjtADeP17CJyxU8m4bWpQxjB982t9--n89OzqAPsHF9D0_d0CYTHDz1NsVFHIwP-TWcDcveWzP6GDLsYrr5cT6myY5TctCEBTyegl2LT8FWZ_rsnt3PPfDp-N1F876afziZNUfzyjJRy4rz1takVYrUTLGFopwTSWjHsOKq61oplKTWWWWlYZxbQlrrasYKKAlhhO6BNxvf5dQObmFdKNH0epn8YNJKR-P1n0rwX_Tn-FUzjJhEtBi8ujdI8WpyedSDz7YkUG6PU9aYI05pjaj4P8oUEhgRiQv68i_0Mk4plCQKJYRASIg1tb-hSsI5J9c97I2RXvesy8r6rufCvvj90AfyV7EFONwA1753q3876YuPRxvLn8dGsZk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477700771</pqid></control><display><type>article</type><title>Low Copy Numbers of DC‐SIGN in Cell Membrane Microdomains: Implications for Structure and Function</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Liu, Ping ; Wang, Xiang ; Itano, Michelle S. ; Neumann, Aaron K. ; de Silva, Aravinda M. ; Jacobson, Ken ; Thompson, Nancy L.</creator><creatorcontrib>Liu, Ping ; Wang, Xiang ; Itano, Michelle S. ; Neumann, Aaron K. ; de Silva, Aravinda M. ; Jacobson, Ken ; Thompson, Nancy L.</creatorcontrib><description>Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC‐SIGN, a C‐type lectin, in membrane microdomains. DC‐SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC‐SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1 µm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3 T3 cells contains only 4–8 molecules of DC‐SIGN, consistent with our preliminary super‐resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (∼50 nm) pathogen, dengue virus, leading to infection of host cells.
We developed a single‐molecule imaging method, based on total internal reflection fluorescence microscopy, to quantify the number of DC‐SIGN (a C‐type lectin) molecules in its cell‐surface microdomains. Our results reveal that the majority of cell‐surface microdomains contain fewer than 20 DC‐SIGN molecules. By employing immunofluorescence staining, confocal and super‐resolution imaging, we further show that those small membrane DC‐SIGN assemblies are sufficient to capture the small‐sized pathogen dengue viruses, leading to efficient internalization of the viruses and productive infection.</description><identifier>ISSN: 1398-9219</identifier><identifier>EISSN: 1600-0854</identifier><identifier>DOI: 10.1111/tra.12138</identifier><identifier>PMID: 24313910</identifier><language>eng</language><publisher>Former Munksgaard: John Wiley & Sons A/S</publisher><subject>Animals ; CD209 ; Cell Adhesion Molecules - metabolism ; C‐type lectins ; Dendritic Cells - ultrastructure ; Dendritic Cells - virology ; dengue ; Dengue virus ; Dengue Virus - metabolism ; Humans ; Lectins, C-Type - metabolism ; membrane microdomains ; Membrane Microdomains - metabolism ; Membrane Microdomains - ultrastructure ; Membrane Microdomains - virology ; Mice ; microdomain occupancy ; Microscopy, Fluorescence - methods ; NIH 3T3 Cells ; Protein Binding ; quantitative imaging ; Receptors, Cell Surface - metabolism ; total internal reflection fluorescence microscopy ; Virus Internalization</subject><ispartof>Traffic (Copenhagen, Denmark), 2014-02, Vol.15 (2), p.179-196</ispartof><rights>2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd</rights><rights>2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</rights><rights>2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-55bc62b9926494d93552823f41959ffb87983cec9c8a455c22bce644935822423</citedby><cites>FETCH-LOGICAL-c4768-55bc62b9926494d93552823f41959ffb87983cec9c8a455c22bce644935822423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftra.12138$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftra.12138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,1435,27933,27934,45583,45584,46418,46842</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24313910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Itano, Michelle S.</creatorcontrib><creatorcontrib>Neumann, Aaron K.</creatorcontrib><creatorcontrib>de Silva, Aravinda M.</creatorcontrib><creatorcontrib>Jacobson, Ken</creatorcontrib><creatorcontrib>Thompson, Nancy L.</creatorcontrib><title>Low Copy Numbers of DC‐SIGN in Cell Membrane Microdomains: Implications for Structure and Function</title><title>Traffic (Copenhagen, Denmark)</title><addtitle>Traffic</addtitle><description>Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC‐SIGN, a C‐type lectin, in membrane microdomains. DC‐SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC‐SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1 µm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3 T3 cells contains only 4–8 molecules of DC‐SIGN, consistent with our preliminary super‐resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (∼50 nm) pathogen, dengue virus, leading to infection of host cells.
We developed a single‐molecule imaging method, based on total internal reflection fluorescence microscopy, to quantify the number of DC‐SIGN (a C‐type lectin) molecules in its cell‐surface microdomains. Our results reveal that the majority of cell‐surface microdomains contain fewer than 20 DC‐SIGN molecules. By employing immunofluorescence staining, confocal and super‐resolution imaging, we further show that those small membrane DC‐SIGN assemblies are sufficient to capture the small‐sized pathogen dengue viruses, leading to efficient internalization of the viruses and productive infection.</description><subject>Animals</subject><subject>CD209</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>C‐type lectins</subject><subject>Dendritic Cells - ultrastructure</subject><subject>Dendritic Cells - virology</subject><subject>dengue</subject><subject>Dengue virus</subject><subject>Dengue Virus - metabolism</subject><subject>Humans</subject><subject>Lectins, C-Type - metabolism</subject><subject>membrane microdomains</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membrane Microdomains - ultrastructure</subject><subject>Membrane Microdomains - virology</subject><subject>Mice</subject><subject>microdomain occupancy</subject><subject>Microscopy, Fluorescence - methods</subject><subject>NIH 3T3 Cells</subject><subject>Protein Binding</subject><subject>quantitative imaging</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>total internal reflection fluorescence microscopy</subject><subject>Virus Internalization</subject><issn>1398-9219</issn><issn>1600-0854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9qFTEYxYNY7B9d-AIScGMX0-bvJHEhlNHWC7cVbF2HTG5GU2aS22TGcnc-go_gs_RR-iTm9taigpjNFzg_Dt93DgDPMTrA5R2OyRxggql8BHZwjVCFJGePy58qWSmC1TbYzfkSIUQ4Y0_ANmG0aBjtADeP17CJyxU8m4bWpQxjB982t9--n89OzqAPsHF9D0_d0CYTHDz1NsVFHIwP-TWcDcveWzP6GDLsYrr5cT6myY5TctCEBTyegl2LT8FWZ_rsnt3PPfDp-N1F876afziZNUfzyjJRy4rz1takVYrUTLGFopwTSWjHsOKq61oplKTWWWWlYZxbQlrrasYKKAlhhO6BNxvf5dQObmFdKNH0epn8YNJKR-P1n0rwX_Tn-FUzjJhEtBi8ujdI8WpyedSDz7YkUG6PU9aYI05pjaj4P8oUEhgRiQv68i_0Mk4plCQKJYRASIg1tb-hSsI5J9c97I2RXvesy8r6rufCvvj90AfyV7EFONwA1753q3876YuPRxvLn8dGsZk</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Liu, Ping</creator><creator>Wang, Xiang</creator><creator>Itano, Michelle S.</creator><creator>Neumann, Aaron K.</creator><creator>de Silva, Aravinda M.</creator><creator>Jacobson, Ken</creator><creator>Thompson, Nancy L.</creator><general>John Wiley & Sons A/S</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7U9</scope><scope>C1K</scope><scope>F1W</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>201402</creationdate><title>Low Copy Numbers of DC‐SIGN in Cell Membrane Microdomains: Implications for Structure and Function</title><author>Liu, Ping ; Wang, Xiang ; Itano, Michelle S. ; Neumann, Aaron K. ; de Silva, Aravinda M. ; Jacobson, Ken ; Thompson, Nancy L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-55bc62b9926494d93552823f41959ffb87983cec9c8a455c22bce644935822423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>CD209</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>C‐type lectins</topic><topic>Dendritic Cells - ultrastructure</topic><topic>Dendritic Cells - virology</topic><topic>dengue</topic><topic>Dengue virus</topic><topic>Dengue Virus - metabolism</topic><topic>Humans</topic><topic>Lectins, C-Type - metabolism</topic><topic>membrane microdomains</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membrane Microdomains - ultrastructure</topic><topic>Membrane Microdomains - virology</topic><topic>Mice</topic><topic>microdomain occupancy</topic><topic>Microscopy, Fluorescence - methods</topic><topic>NIH 3T3 Cells</topic><topic>Protein Binding</topic><topic>quantitative imaging</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>total internal reflection fluorescence microscopy</topic><topic>Virus Internalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Itano, Michelle S.</creatorcontrib><creatorcontrib>Neumann, Aaron K.</creatorcontrib><creatorcontrib>de Silva, Aravinda M.</creatorcontrib><creatorcontrib>Jacobson, Ken</creatorcontrib><creatorcontrib>Thompson, Nancy L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Traffic (Copenhagen, Denmark)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ping</au><au>Wang, Xiang</au><au>Itano, Michelle S.</au><au>Neumann, Aaron K.</au><au>de Silva, Aravinda M.</au><au>Jacobson, Ken</au><au>Thompson, Nancy L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Copy Numbers of DC‐SIGN in Cell Membrane Microdomains: Implications for Structure and Function</atitle><jtitle>Traffic (Copenhagen, Denmark)</jtitle><addtitle>Traffic</addtitle><date>2014-02</date><risdate>2014</risdate><volume>15</volume><issue>2</issue><spage>179</spage><epage>196</epage><pages>179-196</pages><issn>1398-9219</issn><eissn>1600-0854</eissn><abstract>Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC‐SIGN, a C‐type lectin, in membrane microdomains. DC‐SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC‐SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1 µm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3 T3 cells contains only 4–8 molecules of DC‐SIGN, consistent with our preliminary super‐resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (∼50 nm) pathogen, dengue virus, leading to infection of host cells.
We developed a single‐molecule imaging method, based on total internal reflection fluorescence microscopy, to quantify the number of DC‐SIGN (a C‐type lectin) molecules in its cell‐surface microdomains. Our results reveal that the majority of cell‐surface microdomains contain fewer than 20 DC‐SIGN molecules. By employing immunofluorescence staining, confocal and super‐resolution imaging, we further show that those small membrane DC‐SIGN assemblies are sufficient to capture the small‐sized pathogen dengue viruses, leading to efficient internalization of the viruses and productive infection.</abstract><cop>Former Munksgaard</cop><pub>John Wiley & Sons A/S</pub><pmid>24313910</pmid><doi>10.1111/tra.12138</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1398-9219 |
ispartof | Traffic (Copenhagen, Denmark), 2014-02, Vol.15 (2), p.179-196 |
issn | 1398-9219 1600-0854 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4104803 |
source | MEDLINE; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Animals CD209 Cell Adhesion Molecules - metabolism C‐type lectins Dendritic Cells - ultrastructure Dendritic Cells - virology dengue Dengue virus Dengue Virus - metabolism Humans Lectins, C-Type - metabolism membrane microdomains Membrane Microdomains - metabolism Membrane Microdomains - ultrastructure Membrane Microdomains - virology Mice microdomain occupancy Microscopy, Fluorescence - methods NIH 3T3 Cells Protein Binding quantitative imaging Receptors, Cell Surface - metabolism total internal reflection fluorescence microscopy Virus Internalization |
title | Low Copy Numbers of DC‐SIGN in Cell Membrane Microdomains: Implications for Structure and Function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T08%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Copy%20Numbers%20of%20DC%E2%80%90SIGN%20in%20Cell%20Membrane%20Microdomains:%20Implications%20for%C2%A0Structure%20and%20Function&rft.jtitle=Traffic%20(Copenhagen,%20Denmark)&rft.au=Liu,%20Ping&rft.date=2014-02&rft.volume=15&rft.issue=2&rft.spage=179&rft.epage=196&rft.pages=179-196&rft.issn=1398-9219&rft.eissn=1600-0854&rft_id=info:doi/10.1111/tra.12138&rft_dat=%3Cproquest_pubme%3E1490710281%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477700771&rft_id=info:pmid/24313910&rfr_iscdi=true |