Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish
Non-mammalian vertebrates rely on electrical resonance for frequency tuning in auditory hair cells. A key component of the resonance exhibited by these cells is an outward calcium-activated potassium current that flows through large-conductance calcium-activated potassium (BK) channels. Previous wor...
Gespeichert in:
Veröffentlicht in: | Journal of experimental biology 2014-07, Vol.217 (Pt 14), p.2531-2539 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2539 |
---|---|
container_issue | Pt 14 |
container_start_page | 2531 |
container_title | Journal of experimental biology |
container_volume | 217 |
creator | Rohmann, Kevin N Tripp, Joel A Genova, Rachel M Bass, Andrew H |
description | Non-mammalian vertebrates rely on electrical resonance for frequency tuning in auditory hair cells. A key component of the resonance exhibited by these cells is an outward calcium-activated potassium current that flows through large-conductance calcium-activated potassium (BK) channels. Previous work in midshipman fish (Porichthys notatus) has shown that BK expression correlates with seasonal changes in hearing sensitivity and that pharmacologically blocking these channels replicates the natural decreases in sensitivity during the winter non-reproductive season. To test the hypothesis that reducing BK channel function is sufficient to change auditory thresholds in fish, morpholino oligonucleotides (MOs) were used in larval zebrafish (Danio rerio) to alter expression of slo1a and slo1b, duplicate genes coding for the pore-forming α-subunits of BK channels. Following MO injection, microphonic potentials were recorded from the inner ear of larvae. Quantitative real-time PCR was then used to determine the MO effect on slo1a and slo1b expression in these same fish. Knockdown of either slo1a or slo1b resulted in disrupted gene expression and increased auditory thresholds across the same range of frequencies of natural auditory plasticity observed in midshipman. We conclude that interference with the normal expression of individual slo1 genes is sufficient to increase auditory thresholds in zebrafish larvae and that changes in BK channel expression are a direct mechanism for regulation of peripheral hearing sensitivity among fishes. |
doi_str_mv | 10.1242/jeb.103093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4103636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1546215098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-439ebbeecc360bb74e66ff2ed204a1b3c751f158aecab8bca57802966e072e0a3</originalsourceid><addsrcrecordid>eNpVUU1vFDEMjSoQXRYu_QFVjqjSlHxNZuZSiVZ8iSIucI6crNNJlU22yUzV8uuZ1ZYK7IMP79l-9iPkhLNzLpR4f4v2nDPJBnlEVlx1XTNw1b4gK8aEaNighmPyutZbtoRu1StyLFTPpNJsRdJ3SGE3R5hCTjR7evmNuhFSwkjxYVew1j0QKq2z98EFTBOdMoU4YaEwb8KUyyMdIRTqMEY6jUvPmOOm0pBohHIPkf5GW8CHOr4hLz3Eim-f6pr8-vTx59WX5vrH569XH64bJ7t-apQc0FpE56Rm1nYKtfZe4EYwBdxK17Xc87YHdGB766DteiYGrZF1AhnINbk4zN3Ndosbt6guEM2uhC2UR5MhmP-RFEZzk--NWh6pl1yTd08DSr6bsU5mG-r-QEiY52p4q7TgLRv6hXp2oLqSay3on9dwZvYGmcUgczBoIZ_-K-yZ-tcR-QcsLI9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1546215098</pqid></control><display><type>article</type><title>Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>Rohmann, Kevin N ; Tripp, Joel A ; Genova, Rachel M ; Bass, Andrew H</creator><creatorcontrib>Rohmann, Kevin N ; Tripp, Joel A ; Genova, Rachel M ; Bass, Andrew H</creatorcontrib><description>Non-mammalian vertebrates rely on electrical resonance for frequency tuning in auditory hair cells. A key component of the resonance exhibited by these cells is an outward calcium-activated potassium current that flows through large-conductance calcium-activated potassium (BK) channels. Previous work in midshipman fish (Porichthys notatus) has shown that BK expression correlates with seasonal changes in hearing sensitivity and that pharmacologically blocking these channels replicates the natural decreases in sensitivity during the winter non-reproductive season. To test the hypothesis that reducing BK channel function is sufficient to change auditory thresholds in fish, morpholino oligonucleotides (MOs) were used in larval zebrafish (Danio rerio) to alter expression of slo1a and slo1b, duplicate genes coding for the pore-forming α-subunits of BK channels. Following MO injection, microphonic potentials were recorded from the inner ear of larvae. Quantitative real-time PCR was then used to determine the MO effect on slo1a and slo1b expression in these same fish. Knockdown of either slo1a or slo1b resulted in disrupted gene expression and increased auditory thresholds across the same range of frequencies of natural auditory plasticity observed in midshipman. We conclude that interference with the normal expression of individual slo1 genes is sufficient to increase auditory thresholds in zebrafish larvae and that changes in BK channel expression are a direct mechanism for regulation of peripheral hearing sensitivity among fishes.</description><identifier>ISSN: 0022-0949</identifier><identifier>EISSN: 1477-9145</identifier><identifier>DOI: 10.1242/jeb.103093</identifier><identifier>PMID: 24803460</identifier><language>eng</language><publisher>England: Company of Biologists</publisher><subject>Animals ; Auditory Threshold - physiology ; Gene Expression ; Hair Cells, Auditory - physiology ; Large-Conductance Calcium-Activated Potassium Channels - genetics ; Larva - physiology ; Morpholinos ; Real-Time Polymerase Chain Reaction ; Zebrafish - physiology</subject><ispartof>Journal of experimental biology, 2014-07, Vol.217 (Pt 14), p.2531-2539</ispartof><rights>2014. Published by The Company of Biologists Ltd.</rights><rights>2014. Published by The Company of Biologists Ltd 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-439ebbeecc360bb74e66ff2ed204a1b3c751f158aecab8bca57802966e072e0a3</citedby><cites>FETCH-LOGICAL-c378t-439ebbeecc360bb74e66ff2ed204a1b3c751f158aecab8bca57802966e072e0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3678,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24803460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rohmann, Kevin N</creatorcontrib><creatorcontrib>Tripp, Joel A</creatorcontrib><creatorcontrib>Genova, Rachel M</creatorcontrib><creatorcontrib>Bass, Andrew H</creatorcontrib><title>Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish</title><title>Journal of experimental biology</title><addtitle>J Exp Biol</addtitle><description>Non-mammalian vertebrates rely on electrical resonance for frequency tuning in auditory hair cells. A key component of the resonance exhibited by these cells is an outward calcium-activated potassium current that flows through large-conductance calcium-activated potassium (BK) channels. Previous work in midshipman fish (Porichthys notatus) has shown that BK expression correlates with seasonal changes in hearing sensitivity and that pharmacologically blocking these channels replicates the natural decreases in sensitivity during the winter non-reproductive season. To test the hypothesis that reducing BK channel function is sufficient to change auditory thresholds in fish, morpholino oligonucleotides (MOs) were used in larval zebrafish (Danio rerio) to alter expression of slo1a and slo1b, duplicate genes coding for the pore-forming α-subunits of BK channels. Following MO injection, microphonic potentials were recorded from the inner ear of larvae. Quantitative real-time PCR was then used to determine the MO effect on slo1a and slo1b expression in these same fish. Knockdown of either slo1a or slo1b resulted in disrupted gene expression and increased auditory thresholds across the same range of frequencies of natural auditory plasticity observed in midshipman. We conclude that interference with the normal expression of individual slo1 genes is sufficient to increase auditory thresholds in zebrafish larvae and that changes in BK channel expression are a direct mechanism for regulation of peripheral hearing sensitivity among fishes.</description><subject>Animals</subject><subject>Auditory Threshold - physiology</subject><subject>Gene Expression</subject><subject>Hair Cells, Auditory - physiology</subject><subject>Large-Conductance Calcium-Activated Potassium Channels - genetics</subject><subject>Larva - physiology</subject><subject>Morpholinos</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Zebrafish - physiology</subject><issn>0022-0949</issn><issn>1477-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1vFDEMjSoQXRYu_QFVjqjSlHxNZuZSiVZ8iSIucI6crNNJlU22yUzV8uuZ1ZYK7IMP79l-9iPkhLNzLpR4f4v2nDPJBnlEVlx1XTNw1b4gK8aEaNighmPyutZbtoRu1StyLFTPpNJsRdJ3SGE3R5hCTjR7evmNuhFSwkjxYVew1j0QKq2z98EFTBOdMoU4YaEwb8KUyyMdIRTqMEY6jUvPmOOm0pBohHIPkf5GW8CHOr4hLz3Eim-f6pr8-vTx59WX5vrH569XH64bJ7t-apQc0FpE56Rm1nYKtfZe4EYwBdxK17Xc87YHdGB766DteiYGrZF1AhnINbk4zN3Ndosbt6guEM2uhC2UR5MhmP-RFEZzk--NWh6pl1yTd08DSr6bsU5mG-r-QEiY52p4q7TgLRv6hXp2oLqSay3on9dwZvYGmcUgczBoIZ_-K-yZ-tcR-QcsLI9g</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Rohmann, Kevin N</creator><creator>Tripp, Joel A</creator><creator>Genova, Rachel M</creator><creator>Bass, Andrew H</creator><general>Company of Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140715</creationdate><title>Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish</title><author>Rohmann, Kevin N ; Tripp, Joel A ; Genova, Rachel M ; Bass, Andrew H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-439ebbeecc360bb74e66ff2ed204a1b3c751f158aecab8bca57802966e072e0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Auditory Threshold - physiology</topic><topic>Gene Expression</topic><topic>Hair Cells, Auditory - physiology</topic><topic>Large-Conductance Calcium-Activated Potassium Channels - genetics</topic><topic>Larva - physiology</topic><topic>Morpholinos</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Zebrafish - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohmann, Kevin N</creatorcontrib><creatorcontrib>Tripp, Joel A</creatorcontrib><creatorcontrib>Genova, Rachel M</creatorcontrib><creatorcontrib>Bass, Andrew H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of experimental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohmann, Kevin N</au><au>Tripp, Joel A</au><au>Genova, Rachel M</au><au>Bass, Andrew H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish</atitle><jtitle>Journal of experimental biology</jtitle><addtitle>J Exp Biol</addtitle><date>2014-07-15</date><risdate>2014</risdate><volume>217</volume><issue>Pt 14</issue><spage>2531</spage><epage>2539</epage><pages>2531-2539</pages><issn>0022-0949</issn><eissn>1477-9145</eissn><abstract>Non-mammalian vertebrates rely on electrical resonance for frequency tuning in auditory hair cells. A key component of the resonance exhibited by these cells is an outward calcium-activated potassium current that flows through large-conductance calcium-activated potassium (BK) channels. Previous work in midshipman fish (Porichthys notatus) has shown that BK expression correlates with seasonal changes in hearing sensitivity and that pharmacologically blocking these channels replicates the natural decreases in sensitivity during the winter non-reproductive season. To test the hypothesis that reducing BK channel function is sufficient to change auditory thresholds in fish, morpholino oligonucleotides (MOs) were used in larval zebrafish (Danio rerio) to alter expression of slo1a and slo1b, duplicate genes coding for the pore-forming α-subunits of BK channels. Following MO injection, microphonic potentials were recorded from the inner ear of larvae. Quantitative real-time PCR was then used to determine the MO effect on slo1a and slo1b expression in these same fish. Knockdown of either slo1a or slo1b resulted in disrupted gene expression and increased auditory thresholds across the same range of frequencies of natural auditory plasticity observed in midshipman. We conclude that interference with the normal expression of individual slo1 genes is sufficient to increase auditory thresholds in zebrafish larvae and that changes in BK channel expression are a direct mechanism for regulation of peripheral hearing sensitivity among fishes.</abstract><cop>England</cop><pub>Company of Biologists</pub><pmid>24803460</pmid><doi>10.1242/jeb.103093</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0949 |
ispartof | Journal of experimental biology, 2014-07, Vol.217 (Pt 14), p.2531-2539 |
issn | 0022-0949 1477-9145 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4103636 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists |
subjects | Animals Auditory Threshold - physiology Gene Expression Hair Cells, Auditory - physiology Large-Conductance Calcium-Activated Potassium Channels - genetics Larva - physiology Morpholinos Real-Time Polymerase Chain Reaction Zebrafish - physiology |
title | Manipulation of BK channel expression is sufficient to alter auditory hair cell thresholds in larval zebrafish |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulation%20of%20BK%20channel%20expression%20is%20sufficient%20to%20alter%20auditory%20hair%20cell%20thresholds%20in%20larval%20zebrafish&rft.jtitle=Journal%20of%20experimental%20biology&rft.au=Rohmann,%20Kevin%20N&rft.date=2014-07-15&rft.volume=217&rft.issue=Pt%2014&rft.spage=2531&rft.epage=2539&rft.pages=2531-2539&rft.issn=0022-0949&rft.eissn=1477-9145&rft_id=info:doi/10.1242/jeb.103093&rft_dat=%3Cproquest_pubme%3E1546215098%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1546215098&rft_id=info:pmid/24803460&rfr_iscdi=true |