Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling
Cardiomyocytes contract against a mechanical load during each heartbeat, and excessive mechanical stress leads to heart diseases. Using a cell-in-gel system that imposes an afterload during cardiomyocyte contraction, we found that nitric oxide synthase (NOS) was involved in transducing mechanical lo...
Gespeichert in:
Veröffentlicht in: | Science signaling 2014-03, Vol.7 (317), p.ra27-ra27 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | ra27 |
---|---|
container_issue | 317 |
container_start_page | ra27 |
container_title | Science signaling |
container_volume | 7 |
creator | Jian, Zhong Han, Huilan Zhang, Tieqiao Puglisi, Jose Izu, Leighton T Shaw, John A Onofiok, Ekama Erickson, Jeffery R Chen, Yi-Je Horvath, Balazs Shimkunas, Rafael Xiao, Wenwu Li, Yuanpei Pan, Tingrui Chan, James Banyasz, Tamas Tardiff, Jil C Chiamvimonvat, Nipavan Bers, Donald M Lam, Kit S Chen-Izu, Ye |
description | Cardiomyocytes contract against a mechanical load during each heartbeat, and excessive mechanical stress leads to heart diseases. Using a cell-in-gel system that imposes an afterload during cardiomyocyte contraction, we found that nitric oxide synthase (NOS) was involved in transducing mechanical load to alter Ca(2+) dynamics. In mouse ventricular myocytes, afterload increased the systolic Ca(2+) transient, which enhanced contractility to counter mechanical load but also caused spontaneous Ca(2+) sparks during diastole that could be arrhythmogenic. The increases in the Ca(2+) transient and sparks were attributable to increased ryanodine receptor (RyR) sensitivity because the amount of Ca2(+) in the sarcoplasmic reticulum load was unchanged. Either pharmacological inhibition or genetic deletion of nNOS (or NOS1), but not of eNOS (or NOS3), prevented afterload-induced Ca2(+) sparks. This differential effect may arise from localized NO signaling, arising from the proximity of nNOS to RyR, as determined by super-resolution imaging. Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) also contributed to afterload-induced Ca(2+) sparks. Cardiomyocytes from a mouse model of familial hypertrophic cardiomyopathy exhibited enhanced mechanotransduction and frequent arrhythmogenic Ca(2+) sparks. Inhibiting nNOS and CaMKII, but not NOX2, in cardiomyocytes from this model eliminated the Ca2(+) sparks, suggesting mechanotransduction activated nNOS and CaMKII independently from NOX2. Thus, our data identify nNOS, CaMKII, and NOX2 as key mediators in mechanochemotransduction during cardiac contraction, which provides new therapeutic targets for treating mechanical stress-induced Ca(2+) dysregulation, arrhythmias, and cardiomyopathy. |
doi_str_mv | 10.1126/scisignal.2005046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4103414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1508945124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-131298a3985a27055c0e00fd3927a2b88132242c71dc6a8c805bfe96937490803</originalsourceid><addsrcrecordid>eNpVUU1PwzAMjRCIj8EP4IJ65NLhfLXpBQkhviQQFzhHmZttQW0CSYsov55OGxOcbMvPz89-hJxSmFLKiouELrmFN82UAUgQxQ45pBUv84oKubvKhcxBleUBOUrpDaCgjFX75ICJQnAFcEjck8Wl8QGXtg1dND7VPXYu-Kzuo_OLDE2sXWiHgENnMwx-BK0BLmWtrZ3pbJ3NhqwJaBr3PRbeddFhFr5cbbO1wJHpmOzNTZPsySZOyOvtzcv1ff74fPdwffWYoyhkl1NOWaUMr5Q0rAQpESzAvOYVKw2bKUU5Y4JhSWssjEIFcja3VTGeLSpQwCfkcs373s9GfWhXihv9Hl1r4qCDcfp_x7ulXoRPLShwQcVIcL4hiOGjt6nTrUtom8Z4G_qkqQQ1PpayFZSuoRhDStHOt2so6JVFemuR3lg0zpz91bed-PWE_wD4vpH5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1508945124</pqid></control><display><type>article</type><title>Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><creator>Jian, Zhong ; Han, Huilan ; Zhang, Tieqiao ; Puglisi, Jose ; Izu, Leighton T ; Shaw, John A ; Onofiok, Ekama ; Erickson, Jeffery R ; Chen, Yi-Je ; Horvath, Balazs ; Shimkunas, Rafael ; Xiao, Wenwu ; Li, Yuanpei ; Pan, Tingrui ; Chan, James ; Banyasz, Tamas ; Tardiff, Jil C ; Chiamvimonvat, Nipavan ; Bers, Donald M ; Lam, Kit S ; Chen-Izu, Ye</creator><creatorcontrib>Jian, Zhong ; Han, Huilan ; Zhang, Tieqiao ; Puglisi, Jose ; Izu, Leighton T ; Shaw, John A ; Onofiok, Ekama ; Erickson, Jeffery R ; Chen, Yi-Je ; Horvath, Balazs ; Shimkunas, Rafael ; Xiao, Wenwu ; Li, Yuanpei ; Pan, Tingrui ; Chan, James ; Banyasz, Tamas ; Tardiff, Jil C ; Chiamvimonvat, Nipavan ; Bers, Donald M ; Lam, Kit S ; Chen-Izu, Ye</creatorcontrib><description>Cardiomyocytes contract against a mechanical load during each heartbeat, and excessive mechanical stress leads to heart diseases. Using a cell-in-gel system that imposes an afterload during cardiomyocyte contraction, we found that nitric oxide synthase (NOS) was involved in transducing mechanical load to alter Ca(2+) dynamics. In mouse ventricular myocytes, afterload increased the systolic Ca(2+) transient, which enhanced contractility to counter mechanical load but also caused spontaneous Ca(2+) sparks during diastole that could be arrhythmogenic. The increases in the Ca(2+) transient and sparks were attributable to increased ryanodine receptor (RyR) sensitivity because the amount of Ca2(+) in the sarcoplasmic reticulum load was unchanged. Either pharmacological inhibition or genetic deletion of nNOS (or NOS1), but not of eNOS (or NOS3), prevented afterload-induced Ca2(+) sparks. This differential effect may arise from localized NO signaling, arising from the proximity of nNOS to RyR, as determined by super-resolution imaging. Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) also contributed to afterload-induced Ca(2+) sparks. Cardiomyocytes from a mouse model of familial hypertrophic cardiomyopathy exhibited enhanced mechanotransduction and frequent arrhythmogenic Ca(2+) sparks. Inhibiting nNOS and CaMKII, but not NOX2, in cardiomyocytes from this model eliminated the Ca2(+) sparks, suggesting mechanotransduction activated nNOS and CaMKII independently from NOX2. Thus, our data identify nNOS, CaMKII, and NOX2 as key mediators in mechanochemotransduction during cardiac contraction, which provides new therapeutic targets for treating mechanical stress-induced Ca(2+) dysregulation, arrhythmias, and cardiomyopathy.</description><identifier>ISSN: 1945-0877</identifier><identifier>EISSN: 1937-9145</identifier><identifier>DOI: 10.1126/scisignal.2005046</identifier><identifier>PMID: 24643800</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism ; Diastole ; Heart - physiology ; Mechanotransduction, Cellular ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - enzymology ; Myocytes, Cardiac - metabolism ; Nitric Oxide - metabolism ; Nitric Oxide Synthase - metabolism ; Signal Transduction ; Systole</subject><ispartof>Science signaling, 2014-03, Vol.7 (317), p.ra27-ra27</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-131298a3985a27055c0e00fd3927a2b88132242c71dc6a8c805bfe96937490803</citedby><cites>FETCH-LOGICAL-c465t-131298a3985a27055c0e00fd3927a2b88132242c71dc6a8c805bfe96937490803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24643800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jian, Zhong</creatorcontrib><creatorcontrib>Han, Huilan</creatorcontrib><creatorcontrib>Zhang, Tieqiao</creatorcontrib><creatorcontrib>Puglisi, Jose</creatorcontrib><creatorcontrib>Izu, Leighton T</creatorcontrib><creatorcontrib>Shaw, John A</creatorcontrib><creatorcontrib>Onofiok, Ekama</creatorcontrib><creatorcontrib>Erickson, Jeffery R</creatorcontrib><creatorcontrib>Chen, Yi-Je</creatorcontrib><creatorcontrib>Horvath, Balazs</creatorcontrib><creatorcontrib>Shimkunas, Rafael</creatorcontrib><creatorcontrib>Xiao, Wenwu</creatorcontrib><creatorcontrib>Li, Yuanpei</creatorcontrib><creatorcontrib>Pan, Tingrui</creatorcontrib><creatorcontrib>Chan, James</creatorcontrib><creatorcontrib>Banyasz, Tamas</creatorcontrib><creatorcontrib>Tardiff, Jil C</creatorcontrib><creatorcontrib>Chiamvimonvat, Nipavan</creatorcontrib><creatorcontrib>Bers, Donald M</creatorcontrib><creatorcontrib>Lam, Kit S</creatorcontrib><creatorcontrib>Chen-Izu, Ye</creatorcontrib><title>Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling</title><title>Science signaling</title><addtitle>Sci Signal</addtitle><description>Cardiomyocytes contract against a mechanical load during each heartbeat, and excessive mechanical stress leads to heart diseases. Using a cell-in-gel system that imposes an afterload during cardiomyocyte contraction, we found that nitric oxide synthase (NOS) was involved in transducing mechanical load to alter Ca(2+) dynamics. In mouse ventricular myocytes, afterload increased the systolic Ca(2+) transient, which enhanced contractility to counter mechanical load but also caused spontaneous Ca(2+) sparks during diastole that could be arrhythmogenic. The increases in the Ca(2+) transient and sparks were attributable to increased ryanodine receptor (RyR) sensitivity because the amount of Ca2(+) in the sarcoplasmic reticulum load was unchanged. Either pharmacological inhibition or genetic deletion of nNOS (or NOS1), but not of eNOS (or NOS3), prevented afterload-induced Ca2(+) sparks. This differential effect may arise from localized NO signaling, arising from the proximity of nNOS to RyR, as determined by super-resolution imaging. Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) also contributed to afterload-induced Ca(2+) sparks. Cardiomyocytes from a mouse model of familial hypertrophic cardiomyopathy exhibited enhanced mechanotransduction and frequent arrhythmogenic Ca(2+) sparks. Inhibiting nNOS and CaMKII, but not NOX2, in cardiomyocytes from this model eliminated the Ca2(+) sparks, suggesting mechanotransduction activated nNOS and CaMKII independently from NOX2. Thus, our data identify nNOS, CaMKII, and NOX2 as key mediators in mechanochemotransduction during cardiac contraction, which provides new therapeutic targets for treating mechanical stress-induced Ca(2+) dysregulation, arrhythmias, and cardiomyopathy.</description><subject>Animals</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism</subject><subject>Diastole</subject><subject>Heart - physiology</subject><subject>Mechanotransduction, Cellular</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - enzymology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Signal Transduction</subject><subject>Systole</subject><issn>1945-0877</issn><issn>1937-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1PwzAMjRCIj8EP4IJ65NLhfLXpBQkhviQQFzhHmZttQW0CSYsov55OGxOcbMvPz89-hJxSmFLKiouELrmFN82UAUgQxQ45pBUv84oKubvKhcxBleUBOUrpDaCgjFX75ICJQnAFcEjck8Wl8QGXtg1dND7VPXYu-Kzuo_OLDE2sXWiHgENnMwx-BK0BLmWtrZ3pbJ3NhqwJaBr3PRbeddFhFr5cbbO1wJHpmOzNTZPsySZOyOvtzcv1ff74fPdwffWYoyhkl1NOWaUMr5Q0rAQpESzAvOYVKw2bKUU5Y4JhSWssjEIFcja3VTGeLSpQwCfkcs373s9GfWhXihv9Hl1r4qCDcfp_x7ulXoRPLShwQcVIcL4hiOGjt6nTrUtom8Z4G_qkqQQ1PpayFZSuoRhDStHOt2so6JVFemuR3lg0zpz91bed-PWE_wD4vpH5</recordid><startdate>20140318</startdate><enddate>20140318</enddate><creator>Jian, Zhong</creator><creator>Han, Huilan</creator><creator>Zhang, Tieqiao</creator><creator>Puglisi, Jose</creator><creator>Izu, Leighton T</creator><creator>Shaw, John A</creator><creator>Onofiok, Ekama</creator><creator>Erickson, Jeffery R</creator><creator>Chen, Yi-Je</creator><creator>Horvath, Balazs</creator><creator>Shimkunas, Rafael</creator><creator>Xiao, Wenwu</creator><creator>Li, Yuanpei</creator><creator>Pan, Tingrui</creator><creator>Chan, James</creator><creator>Banyasz, Tamas</creator><creator>Tardiff, Jil C</creator><creator>Chiamvimonvat, Nipavan</creator><creator>Bers, Donald M</creator><creator>Lam, Kit S</creator><creator>Chen-Izu, Ye</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140318</creationdate><title>Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling</title><author>Jian, Zhong ; Han, Huilan ; Zhang, Tieqiao ; Puglisi, Jose ; Izu, Leighton T ; Shaw, John A ; Onofiok, Ekama ; Erickson, Jeffery R ; Chen, Yi-Je ; Horvath, Balazs ; Shimkunas, Rafael ; Xiao, Wenwu ; Li, Yuanpei ; Pan, Tingrui ; Chan, James ; Banyasz, Tamas ; Tardiff, Jil C ; Chiamvimonvat, Nipavan ; Bers, Donald M ; Lam, Kit S ; Chen-Izu, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-131298a3985a27055c0e00fd3927a2b88132242c71dc6a8c805bfe96937490803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism</topic><topic>Diastole</topic><topic>Heart - physiology</topic><topic>Mechanotransduction, Cellular</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - enzymology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Signal Transduction</topic><topic>Systole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jian, Zhong</creatorcontrib><creatorcontrib>Han, Huilan</creatorcontrib><creatorcontrib>Zhang, Tieqiao</creatorcontrib><creatorcontrib>Puglisi, Jose</creatorcontrib><creatorcontrib>Izu, Leighton T</creatorcontrib><creatorcontrib>Shaw, John A</creatorcontrib><creatorcontrib>Onofiok, Ekama</creatorcontrib><creatorcontrib>Erickson, Jeffery R</creatorcontrib><creatorcontrib>Chen, Yi-Je</creatorcontrib><creatorcontrib>Horvath, Balazs</creatorcontrib><creatorcontrib>Shimkunas, Rafael</creatorcontrib><creatorcontrib>Xiao, Wenwu</creatorcontrib><creatorcontrib>Li, Yuanpei</creatorcontrib><creatorcontrib>Pan, Tingrui</creatorcontrib><creatorcontrib>Chan, James</creatorcontrib><creatorcontrib>Banyasz, Tamas</creatorcontrib><creatorcontrib>Tardiff, Jil C</creatorcontrib><creatorcontrib>Chiamvimonvat, Nipavan</creatorcontrib><creatorcontrib>Bers, Donald M</creatorcontrib><creatorcontrib>Lam, Kit S</creatorcontrib><creatorcontrib>Chen-Izu, Ye</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jian, Zhong</au><au>Han, Huilan</au><au>Zhang, Tieqiao</au><au>Puglisi, Jose</au><au>Izu, Leighton T</au><au>Shaw, John A</au><au>Onofiok, Ekama</au><au>Erickson, Jeffery R</au><au>Chen, Yi-Je</au><au>Horvath, Balazs</au><au>Shimkunas, Rafael</au><au>Xiao, Wenwu</au><au>Li, Yuanpei</au><au>Pan, Tingrui</au><au>Chan, James</au><au>Banyasz, Tamas</au><au>Tardiff, Jil C</au><au>Chiamvimonvat, Nipavan</au><au>Bers, Donald M</au><au>Lam, Kit S</au><au>Chen-Izu, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling</atitle><jtitle>Science signaling</jtitle><addtitle>Sci Signal</addtitle><date>2014-03-18</date><risdate>2014</risdate><volume>7</volume><issue>317</issue><spage>ra27</spage><epage>ra27</epage><pages>ra27-ra27</pages><issn>1945-0877</issn><eissn>1937-9145</eissn><abstract>Cardiomyocytes contract against a mechanical load during each heartbeat, and excessive mechanical stress leads to heart diseases. Using a cell-in-gel system that imposes an afterload during cardiomyocyte contraction, we found that nitric oxide synthase (NOS) was involved in transducing mechanical load to alter Ca(2+) dynamics. In mouse ventricular myocytes, afterload increased the systolic Ca(2+) transient, which enhanced contractility to counter mechanical load but also caused spontaneous Ca(2+) sparks during diastole that could be arrhythmogenic. The increases in the Ca(2+) transient and sparks were attributable to increased ryanodine receptor (RyR) sensitivity because the amount of Ca2(+) in the sarcoplasmic reticulum load was unchanged. Either pharmacological inhibition or genetic deletion of nNOS (or NOS1), but not of eNOS (or NOS3), prevented afterload-induced Ca2(+) sparks. This differential effect may arise from localized NO signaling, arising from the proximity of nNOS to RyR, as determined by super-resolution imaging. Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) also contributed to afterload-induced Ca(2+) sparks. Cardiomyocytes from a mouse model of familial hypertrophic cardiomyopathy exhibited enhanced mechanotransduction and frequent arrhythmogenic Ca(2+) sparks. Inhibiting nNOS and CaMKII, but not NOX2, in cardiomyocytes from this model eliminated the Ca2(+) sparks, suggesting mechanotransduction activated nNOS and CaMKII independently from NOX2. Thus, our data identify nNOS, CaMKII, and NOX2 as key mediators in mechanochemotransduction during cardiac contraction, which provides new therapeutic targets for treating mechanical stress-induced Ca(2+) dysregulation, arrhythmias, and cardiomyopathy.</abstract><cop>United States</cop><pmid>24643800</pmid><doi>10.1126/scisignal.2005046</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1945-0877 |
ispartof | Science signaling, 2014-03, Vol.7 (317), p.ra27-ra27 |
issn | 1945-0877 1937-9145 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4103414 |
source | American Association for the Advancement of Science; MEDLINE |
subjects | Animals Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism Diastole Heart - physiology Mechanotransduction, Cellular Mice Mice, Inbred C57BL Mice, Transgenic Myocytes, Cardiac - cytology Myocytes, Cardiac - enzymology Myocytes, Cardiac - metabolism Nitric Oxide - metabolism Nitric Oxide Synthase - metabolism Signal Transduction Systole |
title | Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanochemotransduction%20during%20cardiomyocyte%20contraction%20is%20mediated%20by%20localized%20nitric%20oxide%20signaling&rft.jtitle=Science%20signaling&rft.au=Jian,%20Zhong&rft.date=2014-03-18&rft.volume=7&rft.issue=317&rft.spage=ra27&rft.epage=ra27&rft.pages=ra27-ra27&rft.issn=1945-0877&rft.eissn=1937-9145&rft_id=info:doi/10.1126/scisignal.2005046&rft_dat=%3Cproquest_pubme%3E1508945124%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1508945124&rft_id=info:pmid/24643800&rfr_iscdi=true |