Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells

Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2013, Vol.4 (1), p.1525-1525, Article 1525
Hauptverfasser: Feaver, Ryan E., Gelfand, Bradley D., Blackman, Brett R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1525
container_issue 1
container_start_page 1525
container_title Nature communications
container_volume 4
creator Feaver, Ryan E.
Gelfand, Bradley D.
Blackman, Brett R.
description Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0th and 1st harmonics, is a significant regulator of inflammation, including NF-κB activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-κB activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-κB activity. Thus, PECAM-1 may have a critical role in the endothelium’s exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation. Natural variations in blood flow haemodynamics are associated with localized inflammation and atherosclerosis. Here the authors show that individual harmonics present within this complex signal have distinct impacts on the inflammatory phenotype in endothelial cells.
doi_str_mv 10.1038/ncomms2530
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4100071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2903632861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-81425781fea2d00935262d2c83cab8619cc796366a7fc926e1b1f8362bda7f323</originalsourceid><addsrcrecordid>eNplkUtLxDAUhYMoKurGHyABN6KM5tW03QgivkBwo-uQSW-nlSYZk1bovzfjjDpqNgn3fpzcew5Ch5ScU8KLC2e8tZFlnGygXUYEndCc8c219w46iPGVpMNLWgixjXYYF4JnGd9Fzf1gtcONBuur0WnbGlwHeBvAmTGVg_WuNREHmA2d7gH3DeDW1Z22Vvc-jHjegPP9OAfsa_yuo0lcwOAqn9Cu1R020HVxH23VuotwsLr30MvtzfP1_eTx6e7h-upxYoRg_aSggmV5QWvQrCKk5BmTrGKm4EZPC0lLY_JScil1XpuSSaBTWhdcsmmVKpzxPXS51J0PUwuVAdcH3al5aK0Oo_K6Vb87rm3UzL8rQZNDOU0CJyuB4JMNsVe2jYsVtAM_REU55YJJIrOEHv9BX_0QXFrvk0ouc5Yn6nRJmeBjDFB_D0OJWmSofjJM8NH6-N_oV2IJOFsCMbXcDMLan__lPgD09akO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1313234327</pqid></control><display><type>article</type><title>Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells</title><source>Springer Nature OA Free Journals</source><creator>Feaver, Ryan E. ; Gelfand, Bradley D. ; Blackman, Brett R.</creator><creatorcontrib>Feaver, Ryan E. ; Gelfand, Bradley D. ; Blackman, Brett R.</creatorcontrib><description>Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0th and 1st harmonics, is a significant regulator of inflammation, including NF-κB activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-κB activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-κB activity. Thus, PECAM-1 may have a critical role in the endothelium’s exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation. Natural variations in blood flow haemodynamics are associated with localized inflammation and atherosclerosis. Here the authors show that individual harmonics present within this complex signal have distinct impacts on the inflammatory phenotype in endothelial cells.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms2530</identifier><identifier>PMID: 23443553</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/256 ; 631/443/592 ; 631/57 ; Blood Flow Velocity ; Carotid Arteries - pathology ; Carotid Arteries - physiopathology ; Coronary Circulation ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Fourier Analysis ; Gene Expression Regulation ; Hemodynamics - physiology ; Humanities and Social Sciences ; Humans ; Inflammation - genetics ; Inflammation - pathology ; Inflammation - physiopathology ; Models, Cardiovascular ; multidisciplinary ; Mutation - genetics ; NF-kappa B - genetics ; NF-kappa B - metabolism ; Phenotype ; Platelet Endothelial Cell Adhesion Molecule-1 - metabolism ; Science ; Science (multidisciplinary) ; Stress, Mechanical</subject><ispartof>Nature communications, 2013, Vol.4 (1), p.1525-1525, Article 1525</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Feb 2013</rights><rights>2013 Macmillan Publishers Limited. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-81425781fea2d00935262d2c83cab8619cc796366a7fc926e1b1f8362bda7f323</citedby><cites>FETCH-LOGICAL-c442t-81425781fea2d00935262d2c83cab8619cc796366a7fc926e1b1f8362bda7f323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100071/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100071/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms2530$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23443553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feaver, Ryan E.</creatorcontrib><creatorcontrib>Gelfand, Bradley D.</creatorcontrib><creatorcontrib>Blackman, Brett R.</creatorcontrib><title>Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0th and 1st harmonics, is a significant regulator of inflammation, including NF-κB activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-κB activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-κB activity. Thus, PECAM-1 may have a critical role in the endothelium’s exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation. Natural variations in blood flow haemodynamics are associated with localized inflammation and atherosclerosis. Here the authors show that individual harmonics present within this complex signal have distinct impacts on the inflammatory phenotype in endothelial cells.</description><subject>631/250/256</subject><subject>631/443/592</subject><subject>631/57</subject><subject>Blood Flow Velocity</subject><subject>Carotid Arteries - pathology</subject><subject>Carotid Arteries - physiopathology</subject><subject>Coronary Circulation</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Fourier Analysis</subject><subject>Gene Expression Regulation</subject><subject>Hemodynamics - physiology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Inflammation - genetics</subject><subject>Inflammation - pathology</subject><subject>Inflammation - physiopathology</subject><subject>Models, Cardiovascular</subject><subject>multidisciplinary</subject><subject>Mutation - genetics</subject><subject>NF-kappa B - genetics</subject><subject>NF-kappa B - metabolism</subject><subject>Phenotype</subject><subject>Platelet Endothelial Cell Adhesion Molecule-1 - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stress, Mechanical</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNplkUtLxDAUhYMoKurGHyABN6KM5tW03QgivkBwo-uQSW-nlSYZk1bovzfjjDpqNgn3fpzcew5Ch5ScU8KLC2e8tZFlnGygXUYEndCc8c219w46iPGVpMNLWgixjXYYF4JnGd9Fzf1gtcONBuur0WnbGlwHeBvAmTGVg_WuNREHmA2d7gH3DeDW1Z22Vvc-jHjegPP9OAfsa_yuo0lcwOAqn9Cu1R020HVxH23VuotwsLr30MvtzfP1_eTx6e7h-upxYoRg_aSggmV5QWvQrCKk5BmTrGKm4EZPC0lLY_JScil1XpuSSaBTWhdcsmmVKpzxPXS51J0PUwuVAdcH3al5aK0Oo_K6Vb87rm3UzL8rQZNDOU0CJyuB4JMNsVe2jYsVtAM_REU55YJJIrOEHv9BX_0QXFrvk0ouc5Yn6nRJmeBjDFB_D0OJWmSofjJM8NH6-N_oV2IJOFsCMbXcDMLan__lPgD09akO</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Feaver, Ryan E.</creator><creator>Gelfand, Bradley D.</creator><creator>Blackman, Brett R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>2013</creationdate><title>Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells</title><author>Feaver, Ryan E. ; Gelfand, Bradley D. ; Blackman, Brett R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-81425781fea2d00935262d2c83cab8619cc796366a7fc926e1b1f8362bda7f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/250/256</topic><topic>631/443/592</topic><topic>631/57</topic><topic>Blood Flow Velocity</topic><topic>Carotid Arteries - pathology</topic><topic>Carotid Arteries - physiopathology</topic><topic>Coronary Circulation</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Fourier Analysis</topic><topic>Gene Expression Regulation</topic><topic>Hemodynamics - physiology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Inflammation - genetics</topic><topic>Inflammation - pathology</topic><topic>Inflammation - physiopathology</topic><topic>Models, Cardiovascular</topic><topic>multidisciplinary</topic><topic>Mutation - genetics</topic><topic>NF-kappa B - genetics</topic><topic>NF-kappa B - metabolism</topic><topic>Phenotype</topic><topic>Platelet Endothelial Cell Adhesion Molecule-1 - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feaver, Ryan E.</creatorcontrib><creatorcontrib>Gelfand, Bradley D.</creatorcontrib><creatorcontrib>Blackman, Brett R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feaver, Ryan E.</au><au>Gelfand, Bradley D.</au><au>Blackman, Brett R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>1525</spage><epage>1525</epage><pages>1525-1525</pages><artnum>1525</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0th and 1st harmonics, is a significant regulator of inflammation, including NF-κB activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-κB activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-κB activity. Thus, PECAM-1 may have a critical role in the endothelium’s exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation. Natural variations in blood flow haemodynamics are associated with localized inflammation and atherosclerosis. Here the authors show that individual harmonics present within this complex signal have distinct impacts on the inflammatory phenotype in endothelial cells.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23443553</pmid><doi>10.1038/ncomms2530</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2013, Vol.4 (1), p.1525-1525, Article 1525
issn 2041-1723
2041-1723
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4100071
source Springer Nature OA Free Journals
subjects 631/250/256
631/443/592
631/57
Blood Flow Velocity
Carotid Arteries - pathology
Carotid Arteries - physiopathology
Coronary Circulation
Endothelial Cells - metabolism
Endothelial Cells - pathology
Fourier Analysis
Gene Expression Regulation
Hemodynamics - physiology
Humanities and Social Sciences
Humans
Inflammation - genetics
Inflammation - pathology
Inflammation - physiopathology
Models, Cardiovascular
multidisciplinary
Mutation - genetics
NF-kappa B - genetics
NF-kappa B - metabolism
Phenotype
Platelet Endothelial Cell Adhesion Molecule-1 - metabolism
Science
Science (multidisciplinary)
Stress, Mechanical
title Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20haemodynamic%20frequency%20harmonics%20regulate%20the%20inflammatory%20phenotype%20of%20vascular%20endothelial%20cells&rft.jtitle=Nature%20communications&rft.au=Feaver,%20Ryan%20E.&rft.date=2013&rft.volume=4&rft.issue=1&rft.spage=1525&rft.epage=1525&rft.pages=1525-1525&rft.artnum=1525&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms2530&rft_dat=%3Cproquest_C6C%3E2903632861%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1313234327&rft_id=info:pmid/23443553&rfr_iscdi=true