TSSAR: TSS annotation regime for dRNA-seq data
Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads ma...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2014-03, Vol.15 (1), p.89-89, Article 89 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | BMC bioinformatics |
container_volume | 15 |
creator | Amman, Fabian Wolfinger, Michael T Lorenz, Ronny Hofacker, Ivo L Stadler, Peter F Findeiß, Sven |
description | Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased.
Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches.
Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines. |
doi_str_mv | 10.1186/1471-2105-15-89 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4098767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539460744</galeid><sourcerecordid>A539460744</sourcerecordid><originalsourceid>FETCH-LOGICAL-b614t-d2b61100117b3b40d66c435d025d03e0928fbb334b77ddba97c2a5833f6355c63</originalsourceid><addsrcrecordid>eNqNkttrFDEUxoMotlaffZMBX_RhtsnkOj4Ia_FSKAq79TnkNmvKTNImM6L_vRm2rh2pICGccM7vfDl8CQDPEVwhJNgpIhzVDYK0RrQW7QNwfMg8vHM-Ak9yvoIQcQHpY3DUEMYJwuwYrC632_XmTVVCpUKIoxp9DFVyOz-4qoupspvP6zq7m8qqUT0FjzrVZ_fsNp6Arx_eX559qi--fDw_W1_UmiEy1rYpEZX7ENdYE2gZMwRTC5uysYNtIzqtMSaac2u1arlpFBUYdwxTahg-AW_3uteTHpw1LoxJ9fI6-UGlnzIqL5eV4L_JXfwuCWwFZ7wIvNsLaB__IbCsmDjI2S85-yURlaItIq9up0jxZnJ5lIPPxvW9Ci5OuVANxIITwf8DRYxA1EBa0Jd_oVdxSqHYOVMUC4oR-0PtVO-kD10sY5pZVK4pbgmDnJBCre6hyrJu8CYG1_mSXzS8XjQUZnQ_xp2acpbn282SPd2zJsWck-sO9iEo5-93j2Ev7j7bgf_93_AvbMTPQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1515385316</pqid></control><display><type>article</type><title>TSSAR: TSS annotation regime for dRNA-seq data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Amman, Fabian ; Wolfinger, Michael T ; Lorenz, Ronny ; Hofacker, Ivo L ; Stadler, Peter F ; Findeiß, Sven</creator><creatorcontrib>Amman, Fabian ; Wolfinger, Michael T ; Lorenz, Ronny ; Hofacker, Ivo L ; Stadler, Peter F ; Findeiß, Sven</creatorcontrib><description>Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased.
Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches.
Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-15-89</identifier><identifier>PMID: 24674136</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Academic libraries ; Analysis ; Automation ; Base Sequence ; Bioinformatics ; Colleges & universities ; Computer science ; Databases, Nucleic Acid ; Gene expression ; Genome ; Genomes ; Genomics - methods ; Helicobacter pylori ; Helicobacter pylori - genetics ; High-Throughput Nucleotide Sequencing - methods ; Humans ; Information management ; Physiological aspects ; Programming languages ; RNA sequencing ; Sequence Analysis, RNA - methods ; Software ; Stenotrophomonas maltophilia - genetics</subject><ispartof>BMC bioinformatics, 2014-03, Vol.15 (1), p.89-89, Article 89</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>2014 Amman et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.</rights><rights>Copyright © 2014 Amman et al.; licensee BioMed Central Ltd. 2014 Amman et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b614t-d2b61100117b3b40d66c435d025d03e0928fbb334b77ddba97c2a5833f6355c63</citedby><cites>FETCH-LOGICAL-b614t-d2b61100117b3b40d66c435d025d03e0928fbb334b77ddba97c2a5833f6355c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098767/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4098767/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24674136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amman, Fabian</creatorcontrib><creatorcontrib>Wolfinger, Michael T</creatorcontrib><creatorcontrib>Lorenz, Ronny</creatorcontrib><creatorcontrib>Hofacker, Ivo L</creatorcontrib><creatorcontrib>Stadler, Peter F</creatorcontrib><creatorcontrib>Findeiß, Sven</creatorcontrib><title>TSSAR: TSS annotation regime for dRNA-seq data</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased.
Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches.
Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines.</description><subject>Academic libraries</subject><subject>Analysis</subject><subject>Automation</subject><subject>Base Sequence</subject><subject>Bioinformatics</subject><subject>Colleges & universities</subject><subject>Computer science</subject><subject>Databases, Nucleic Acid</subject><subject>Gene expression</subject><subject>Genome</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - genetics</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Humans</subject><subject>Information management</subject><subject>Physiological aspects</subject><subject>Programming languages</subject><subject>RNA sequencing</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Software</subject><subject>Stenotrophomonas maltophilia - genetics</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkttrFDEUxoMotlaffZMBX_RhtsnkOj4Ia_FSKAq79TnkNmvKTNImM6L_vRm2rh2pICGccM7vfDl8CQDPEVwhJNgpIhzVDYK0RrQW7QNwfMg8vHM-Ak9yvoIQcQHpY3DUEMYJwuwYrC632_XmTVVCpUKIoxp9DFVyOz-4qoupspvP6zq7m8qqUT0FjzrVZ_fsNp6Arx_eX559qi--fDw_W1_UmiEy1rYpEZX7ENdYE2gZMwRTC5uysYNtIzqtMSaac2u1arlpFBUYdwxTahg-AW_3uteTHpw1LoxJ9fI6-UGlnzIqL5eV4L_JXfwuCWwFZ7wIvNsLaB__IbCsmDjI2S85-yURlaItIq9up0jxZnJ5lIPPxvW9Ci5OuVANxIITwf8DRYxA1EBa0Jd_oVdxSqHYOVMUC4oR-0PtVO-kD10sY5pZVK4pbgmDnJBCre6hyrJu8CYG1_mSXzS8XjQUZnQ_xp2acpbn282SPd2zJsWck-sO9iEo5-93j2Ev7j7bgf_93_AvbMTPQg</recordid><startdate>20140327</startdate><enddate>20140327</enddate><creator>Amman, Fabian</creator><creator>Wolfinger, Michael T</creator><creator>Lorenz, Ronny</creator><creator>Hofacker, Ivo L</creator><creator>Stadler, Peter F</creator><creator>Findeiß, Sven</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140327</creationdate><title>TSSAR: TSS annotation regime for dRNA-seq data</title><author>Amman, Fabian ; Wolfinger, Michael T ; Lorenz, Ronny ; Hofacker, Ivo L ; Stadler, Peter F ; Findeiß, Sven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b614t-d2b61100117b3b40d66c435d025d03e0928fbb334b77ddba97c2a5833f6355c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Academic libraries</topic><topic>Analysis</topic><topic>Automation</topic><topic>Base Sequence</topic><topic>Bioinformatics</topic><topic>Colleges & universities</topic><topic>Computer science</topic><topic>Databases, Nucleic Acid</topic><topic>Gene expression</topic><topic>Genome</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - genetics</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Humans</topic><topic>Information management</topic><topic>Physiological aspects</topic><topic>Programming languages</topic><topic>RNA sequencing</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Software</topic><topic>Stenotrophomonas maltophilia - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amman, Fabian</creatorcontrib><creatorcontrib>Wolfinger, Michael T</creatorcontrib><creatorcontrib>Lorenz, Ronny</creatorcontrib><creatorcontrib>Hofacker, Ivo L</creatorcontrib><creatorcontrib>Stadler, Peter F</creatorcontrib><creatorcontrib>Findeiß, Sven</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amman, Fabian</au><au>Wolfinger, Michael T</au><au>Lorenz, Ronny</au><au>Hofacker, Ivo L</au><au>Stadler, Peter F</au><au>Findeiß, Sven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TSSAR: TSS annotation regime for dRNA-seq data</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2014-03-27</date><risdate>2014</risdate><volume>15</volume><issue>1</issue><spage>89</spage><epage>89</epage><pages>89-89</pages><artnum>89</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased.
Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches.
Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24674136</pmid><doi>10.1186/1471-2105-15-89</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2014-03, Vol.15 (1), p.89-89, Article 89 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4098767 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | Academic libraries Analysis Automation Base Sequence Bioinformatics Colleges & universities Computer science Databases, Nucleic Acid Gene expression Genome Genomes Genomics - methods Helicobacter pylori Helicobacter pylori - genetics High-Throughput Nucleotide Sequencing - methods Humans Information management Physiological aspects Programming languages RNA sequencing Sequence Analysis, RNA - methods Software Stenotrophomonas maltophilia - genetics |
title | TSSAR: TSS annotation regime for dRNA-seq data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TSSAR:%20TSS%20annotation%20regime%20for%20dRNA-seq%20data&rft.jtitle=BMC%20bioinformatics&rft.au=Amman,%20Fabian&rft.date=2014-03-27&rft.volume=15&rft.issue=1&rft.spage=89&rft.epage=89&rft.pages=89-89&rft.artnum=89&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-15-89&rft_dat=%3Cgale_pubme%3EA539460744%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1515385316&rft_id=info:pmid/24674136&rft_galeid=A539460744&rfr_iscdi=true |