Three‐dimensional shape variation of talar surface morphology in hominoid primates

The hominoid foot is of particular interest to biological anthropologists, as changes in its anatomy through time reflect the adoption of terrestrial locomotion, particularly in species of Australopithecus and Homo. Understanding the osteological morphology associated with changes in whole foot func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of anatomy 2014-07, Vol.225 (1), p.42-59
Hauptverfasser: Parr, W. C. H., Soligo, C., Smaers, J., Chatterjee, H. J., Ruto, A., Cornish, L., Wroe, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 42
container_title Journal of anatomy
container_volume 225
creator Parr, W. C. H.
Soligo, C.
Smaers, J.
Chatterjee, H. J.
Ruto, A.
Cornish, L.
Wroe, S.
description The hominoid foot is of particular interest to biological anthropologists, as changes in its anatomy through time reflect the adoption of terrestrial locomotion, particularly in species of Australopithecus and Homo. Understanding the osteological morphology associated with changes in whole foot function and the development of the plantar medial longitudinal foot arch are key to understanding the transition through habitual bipedalism in australopithecines to obligate bipedalism and long‐distance running in Homo. The talus is ideal for studying relationships between morphology and function in this context, as it is a major contributor to the adduction–abduction, plantar–dorsal flexion and inversion–eversion of the foot, and transmits all forces encountered from the foot to the leg. The talar surface is predominantly covered by articular facets, which have different quantifiable morphological characters, including surface area, surface curvature and orientation. The talus also presents challenges to the investigator, as its globular shape is very difficult to quantify accurately and reproducibly. Here we apply a three‐dimensional approach using type 3 landmarks (slid semilandmarks) that are geometrically homologous to determine overall talar shape variations in a range of living and fossil hominoid taxa. Additionally, we use novel approaches to quantify the relative orientations and curvatures of talar articular facets by determining the principal vectors of facet orientation and fitting spheres to articular facets. The resulting metrics are analysed using phylogenetic regressions and principal components analyses. Our results suggest that articular surface curvatures reflect locomotor specialisations with, in particular, orang‐utans having more highly curved facets in all but the calcaneal facet. Similarly, our approach to quantifying articular facet orientation appears to be effective in discriminating between extant hominoid species, and may therefore provide a sound basis for the study of fossil taxa and evolution of bipedalism in Australopithecus and Homo.
doi_str_mv 10.1111/joa.12195
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4089345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1548195368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5095-66738aab1e9daef6be2621ad8982240f2e98efd3ea79b7417edec212697975d23</originalsourceid><addsrcrecordid>eNp1kcFO3DAURS1UVAbaBT9QWeqGLgK248T2BgmhlrZCYjOsrTfJC_EoiQc7Ac2OT-g38iV4GIpaJLyx5Hd8dPUuIYecHfN0TpYejrngptghMy5Lk6lCsw9kxpjgmVZa7JH9GJeM8ZwZ-ZHsCamlUKaYkfm8DYiPD39q1-MQnR-go7GFFdI7CA7G9EJ9Q0foINA4hQYqpL0Pq9Z3_mZN3UBb37vBu5quguthxPiJ7DbQRfz8ch-Q6x_f5-c_s8uri1_nZ5dZVTBTZGWpcg2w4GhqwKZcoCgFh1obLYRkjUCjsalzBGUWSnKFNVaCi9Ioo4pa5AfkdOtdTYse6wqHMUBnn2OEtfXg7P-TwbX2xt9ZybTJZZEERy-C4G8njKPtXayw62BAP0XLC6nTWvNSJ_TrG3Tpp5C2taFyqUuZiw31bUtVwccYsHkNw5nddJV-gX3uKrFf_k3_Sv4tJwEnW-Dedbh-32R_X51tlU99W6Bt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534864328</pqid></control><display><type>article</type><title>Three‐dimensional shape variation of talar surface morphology in hominoid primates</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Parr, W. C. H. ; Soligo, C. ; Smaers, J. ; Chatterjee, H. J. ; Ruto, A. ; Cornish, L. ; Wroe, S.</creator><creatorcontrib>Parr, W. C. H. ; Soligo, C. ; Smaers, J. ; Chatterjee, H. J. ; Ruto, A. ; Cornish, L. ; Wroe, S.</creatorcontrib><description>The hominoid foot is of particular interest to biological anthropologists, as changes in its anatomy through time reflect the adoption of terrestrial locomotion, particularly in species of Australopithecus and Homo. Understanding the osteological morphology associated with changes in whole foot function and the development of the plantar medial longitudinal foot arch are key to understanding the transition through habitual bipedalism in australopithecines to obligate bipedalism and long‐distance running in Homo. The talus is ideal for studying relationships between morphology and function in this context, as it is a major contributor to the adduction–abduction, plantar–dorsal flexion and inversion–eversion of the foot, and transmits all forces encountered from the foot to the leg. The talar surface is predominantly covered by articular facets, which have different quantifiable morphological characters, including surface area, surface curvature and orientation. The talus also presents challenges to the investigator, as its globular shape is very difficult to quantify accurately and reproducibly. Here we apply a three‐dimensional approach using type 3 landmarks (slid semilandmarks) that are geometrically homologous to determine overall talar shape variations in a range of living and fossil hominoid taxa. Additionally, we use novel approaches to quantify the relative orientations and curvatures of talar articular facets by determining the principal vectors of facet orientation and fitting spheres to articular facets. The resulting metrics are analysed using phylogenetic regressions and principal components analyses. Our results suggest that articular surface curvatures reflect locomotor specialisations with, in particular, orang‐utans having more highly curved facets in all but the calcaneal facet. Similarly, our approach to quantifying articular facet orientation appears to be effective in discriminating between extant hominoid species, and may therefore provide a sound basis for the study of fossil taxa and evolution of bipedalism in Australopithecus and Homo.</description><identifier>ISSN: 0021-8782</identifier><identifier>EISSN: 1469-7580</identifier><identifier>DOI: 10.1111/joa.12195</identifier><identifier>PMID: 24842795</identifier><identifier>CODEN: JOANAY</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; articular facet curvature and orientation ; Australopithecus afarensis ; Fossils ; Hominidae - anatomy &amp; histology ; Homo floresiensis ; Homo habilis ; Homo neanderthalensis ; Imaging, Three-Dimensional ; Original ; Paranthropus boisei ; Phylogeny ; Principal Component Analysis ; Regression Analysis ; Species Specificity ; talus ; Talus - anatomy &amp; histology</subject><ispartof>Journal of anatomy, 2014-07, Vol.225 (1), p.42-59</ispartof><rights>2014 Anatomical Society</rights><rights>2014 Anatomical Society.</rights><rights>Copyright © 2014 Anatomical Society</rights><rights>2014 Anatomical Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5095-66738aab1e9daef6be2621ad8982240f2e98efd3ea79b7417edec212697975d23</citedby><cites>FETCH-LOGICAL-c5095-66738aab1e9daef6be2621ad8982240f2e98efd3ea79b7417edec212697975d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089345/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089345/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,1414,1430,27911,27912,45561,45562,46396,46820,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24842795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parr, W. C. H.</creatorcontrib><creatorcontrib>Soligo, C.</creatorcontrib><creatorcontrib>Smaers, J.</creatorcontrib><creatorcontrib>Chatterjee, H. J.</creatorcontrib><creatorcontrib>Ruto, A.</creatorcontrib><creatorcontrib>Cornish, L.</creatorcontrib><creatorcontrib>Wroe, S.</creatorcontrib><title>Three‐dimensional shape variation of talar surface morphology in hominoid primates</title><title>Journal of anatomy</title><addtitle>J Anat</addtitle><description>The hominoid foot is of particular interest to biological anthropologists, as changes in its anatomy through time reflect the adoption of terrestrial locomotion, particularly in species of Australopithecus and Homo. Understanding the osteological morphology associated with changes in whole foot function and the development of the plantar medial longitudinal foot arch are key to understanding the transition through habitual bipedalism in australopithecines to obligate bipedalism and long‐distance running in Homo. The talus is ideal for studying relationships between morphology and function in this context, as it is a major contributor to the adduction–abduction, plantar–dorsal flexion and inversion–eversion of the foot, and transmits all forces encountered from the foot to the leg. The talar surface is predominantly covered by articular facets, which have different quantifiable morphological characters, including surface area, surface curvature and orientation. The talus also presents challenges to the investigator, as its globular shape is very difficult to quantify accurately and reproducibly. Here we apply a three‐dimensional approach using type 3 landmarks (slid semilandmarks) that are geometrically homologous to determine overall talar shape variations in a range of living and fossil hominoid taxa. Additionally, we use novel approaches to quantify the relative orientations and curvatures of talar articular facets by determining the principal vectors of facet orientation and fitting spheres to articular facets. The resulting metrics are analysed using phylogenetic regressions and principal components analyses. Our results suggest that articular surface curvatures reflect locomotor specialisations with, in particular, orang‐utans having more highly curved facets in all but the calcaneal facet. Similarly, our approach to quantifying articular facet orientation appears to be effective in discriminating between extant hominoid species, and may therefore provide a sound basis for the study of fossil taxa and evolution of bipedalism in Australopithecus and Homo.</description><subject>Animals</subject><subject>articular facet curvature and orientation</subject><subject>Australopithecus afarensis</subject><subject>Fossils</subject><subject>Hominidae - anatomy &amp; histology</subject><subject>Homo floresiensis</subject><subject>Homo habilis</subject><subject>Homo neanderthalensis</subject><subject>Imaging, Three-Dimensional</subject><subject>Original</subject><subject>Paranthropus boisei</subject><subject>Phylogeny</subject><subject>Principal Component Analysis</subject><subject>Regression Analysis</subject><subject>Species Specificity</subject><subject>talus</subject><subject>Talus - anatomy &amp; histology</subject><issn>0021-8782</issn><issn>1469-7580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFO3DAURS1UVAbaBT9QWeqGLgK248T2BgmhlrZCYjOsrTfJC_EoiQc7Ac2OT-g38iV4GIpaJLyx5Hd8dPUuIYecHfN0TpYejrngptghMy5Lk6lCsw9kxpjgmVZa7JH9GJeM8ZwZ-ZHsCamlUKaYkfm8DYiPD39q1-MQnR-go7GFFdI7CA7G9EJ9Q0foINA4hQYqpL0Pq9Z3_mZN3UBb37vBu5quguthxPiJ7DbQRfz8ch-Q6x_f5-c_s8uri1_nZ5dZVTBTZGWpcg2w4GhqwKZcoCgFh1obLYRkjUCjsalzBGUWSnKFNVaCi9Ioo4pa5AfkdOtdTYse6wqHMUBnn2OEtfXg7P-TwbX2xt9ZybTJZZEERy-C4G8njKPtXayw62BAP0XLC6nTWvNSJ_TrG3Tpp5C2taFyqUuZiw31bUtVwccYsHkNw5nddJV-gX3uKrFf_k3_Sv4tJwEnW-Dedbh-32R_X51tlU99W6Bt</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Parr, W. C. H.</creator><creator>Soligo, C.</creator><creator>Smaers, J.</creator><creator>Chatterjee, H. J.</creator><creator>Ruto, A.</creator><creator>Cornish, L.</creator><creator>Wroe, S.</creator><general>Wiley Subscription Services, Inc</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201407</creationdate><title>Three‐dimensional shape variation of talar surface morphology in hominoid primates</title><author>Parr, W. C. H. ; Soligo, C. ; Smaers, J. ; Chatterjee, H. J. ; Ruto, A. ; Cornish, L. ; Wroe, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5095-66738aab1e9daef6be2621ad8982240f2e98efd3ea79b7417edec212697975d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>articular facet curvature and orientation</topic><topic>Australopithecus afarensis</topic><topic>Fossils</topic><topic>Hominidae - anatomy &amp; histology</topic><topic>Homo floresiensis</topic><topic>Homo habilis</topic><topic>Homo neanderthalensis</topic><topic>Imaging, Three-Dimensional</topic><topic>Original</topic><topic>Paranthropus boisei</topic><topic>Phylogeny</topic><topic>Principal Component Analysis</topic><topic>Regression Analysis</topic><topic>Species Specificity</topic><topic>talus</topic><topic>Talus - anatomy &amp; histology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parr, W. C. H.</creatorcontrib><creatorcontrib>Soligo, C.</creatorcontrib><creatorcontrib>Smaers, J.</creatorcontrib><creatorcontrib>Chatterjee, H. J.</creatorcontrib><creatorcontrib>Ruto, A.</creatorcontrib><creatorcontrib>Cornish, L.</creatorcontrib><creatorcontrib>Wroe, S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of anatomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parr, W. C. H.</au><au>Soligo, C.</au><au>Smaers, J.</au><au>Chatterjee, H. J.</au><au>Ruto, A.</au><au>Cornish, L.</au><au>Wroe, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three‐dimensional shape variation of talar surface morphology in hominoid primates</atitle><jtitle>Journal of anatomy</jtitle><addtitle>J Anat</addtitle><date>2014-07</date><risdate>2014</risdate><volume>225</volume><issue>1</issue><spage>42</spage><epage>59</epage><pages>42-59</pages><issn>0021-8782</issn><eissn>1469-7580</eissn><coden>JOANAY</coden><abstract>The hominoid foot is of particular interest to biological anthropologists, as changes in its anatomy through time reflect the adoption of terrestrial locomotion, particularly in species of Australopithecus and Homo. Understanding the osteological morphology associated with changes in whole foot function and the development of the plantar medial longitudinal foot arch are key to understanding the transition through habitual bipedalism in australopithecines to obligate bipedalism and long‐distance running in Homo. The talus is ideal for studying relationships between morphology and function in this context, as it is a major contributor to the adduction–abduction, plantar–dorsal flexion and inversion–eversion of the foot, and transmits all forces encountered from the foot to the leg. The talar surface is predominantly covered by articular facets, which have different quantifiable morphological characters, including surface area, surface curvature and orientation. The talus also presents challenges to the investigator, as its globular shape is very difficult to quantify accurately and reproducibly. Here we apply a three‐dimensional approach using type 3 landmarks (slid semilandmarks) that are geometrically homologous to determine overall talar shape variations in a range of living and fossil hominoid taxa. Additionally, we use novel approaches to quantify the relative orientations and curvatures of talar articular facets by determining the principal vectors of facet orientation and fitting spheres to articular facets. The resulting metrics are analysed using phylogenetic regressions and principal components analyses. Our results suggest that articular surface curvatures reflect locomotor specialisations with, in particular, orang‐utans having more highly curved facets in all but the calcaneal facet. Similarly, our approach to quantifying articular facet orientation appears to be effective in discriminating between extant hominoid species, and may therefore provide a sound basis for the study of fossil taxa and evolution of bipedalism in Australopithecus and Homo.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>24842795</pmid><doi>10.1111/joa.12195</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8782
ispartof Journal of anatomy, 2014-07, Vol.225 (1), p.42-59
issn 0021-8782
1469-7580
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4089345
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; PubMed Central; Alma/SFX Local Collection
subjects Animals
articular facet curvature and orientation
Australopithecus afarensis
Fossils
Hominidae - anatomy & histology
Homo floresiensis
Homo habilis
Homo neanderthalensis
Imaging, Three-Dimensional
Original
Paranthropus boisei
Phylogeny
Principal Component Analysis
Regression Analysis
Species Specificity
talus
Talus - anatomy & histology
title Three‐dimensional shape variation of talar surface morphology in hominoid primates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%E2%80%90dimensional%20shape%20variation%20of%20talar%20surface%20morphology%20in%20hominoid%20primates&rft.jtitle=Journal%20of%20anatomy&rft.au=Parr,%20W.%20C.%20H.&rft.date=2014-07&rft.volume=225&rft.issue=1&rft.spage=42&rft.epage=59&rft.pages=42-59&rft.issn=0021-8782&rft.eissn=1469-7580&rft.coden=JOANAY&rft_id=info:doi/10.1111/joa.12195&rft_dat=%3Cproquest_pubme%3E1548195368%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534864328&rft_id=info:pmid/24842795&rfr_iscdi=true