Selective JAK2 Inhibition Specifically Decreases Hodgkin Lymphoma and Mediastinal Large B-cell Lymphoma Growth In Vitro and In Vivo

Classical Hodgkin lymphoma (cHL) and primary mediastinal large B-cell lymphoma (MLBCL) share similar histologic, clinical, and genetic features. In recent studies, we found that disease-specific chromosome 9p24.1/JAK2 amplification increased JAK2 expression and activity in both cHL and MLBCL. This p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2014-05, Vol.20 (10), p.2674-2683
Hauptverfasser: YANSHENG HAO, BJOERN CHAPUY, MONTI, Stefano, SUN, Heather H, RODIG, Scott J, SHIPP, Margaret A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2683
container_issue 10
container_start_page 2674
container_title Clinical cancer research
container_volume 20
creator YANSHENG HAO
BJOERN CHAPUY
MONTI, Stefano
SUN, Heather H
RODIG, Scott J
SHIPP, Margaret A
description Classical Hodgkin lymphoma (cHL) and primary mediastinal large B-cell lymphoma (MLBCL) share similar histologic, clinical, and genetic features. In recent studies, we found that disease-specific chromosome 9p24.1/JAK2 amplification increased JAK2 expression and activity in both cHL and MLBCL. This prompted us to assess the activity of a clinical grade JAK2 selective inhibitor, fedratinib (SAR302503/TG101348), in in vitro and in vivo model systems of cHL and MLBCL with defined JAK2 copy numbers. We used functional and immunohistochemical analyses to investigate the preclinical activity of fedratinib and associated biomarkers in cell lines and murine xenograft models of cHL and MLBCL with known 9p24.1/JAK2 copy number. Chemical JAK2 inhibition decreased the cellular proliferation of cHL and MLBCL cell lines and induced their apoptosis. There was an inverse correlation between 9p24.1/JAK2 copy number and the EC50 of fedratinib. Chemical JAK2 inhibition decreased phosphorylation of JAK2, STAT1, STAT3, and STAT6 and reduced the expression of additional downstream targets, including PD-L1, in a copy number-dependent manner. In murine xenograft models of cHL and MLBCL with 9p24.1/JAK2 amplification, chemical JAK2 inhibition significantly decreased JAK2/STAT signaling and tumor growth and prolonged survival. In in vitro and in vivo studies, pSTAT3 was an excellent biomarker of baseline JAK2 activity and the efficacy of chemical JAK2 inhibition. In in vitro and in vivo analyses, cHL and MLBCL with 9p24.1/JAK2 copy gain are sensitive to chemical JAK2 inhibition suggesting that clinical evaluation of JAK2 blockade is warranted.
doi_str_mv 10.1158/1078-0432.ccr-13-3007
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4084704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24610827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-b2136968baf6afe9178e55571dd0f4f442d2bbc186523125f92063529519399a3</originalsourceid><addsrcrecordid>eNpVkUlPwzAUhC0EYin8BJAvHAN-XrJckKDsFCGxXS3HsVtDGld2KOqZP07Czsm2_M08vRmEtoHsAYh8H0iWJ4Qzuqd1SIAljJBsCa2DEFnCaCqWu_s3s4Y2YnwiBDgQvorWKE-B5DRbR293pja6dXODLw-vKL5oJq50rfMNvpsZ7azTqq4X-NjoYFQ0EZ_7avzsGjxaTGcTP1VYNRW-NpVTsXWNqvFIhbHBR4k2df1LnQX_2k46f_zo2uA_VB-Pud9EK1bV0Wx9nQP0cHpyPzxPRjdnF8PDUaIFydqkpMDSIs1LZVNlTQFZbkS3LVQVsdxyTitalhryVFAGVNiCkpQJWggoWFEoNkAHn76zl3JqKm2aNqhazoKbqrCQXjn5_6dxEzn2c8lJzrMuxwESnwY6-BiDsT9aILJvRfaJyz5xORzeSmCyb6XT7fwd_KP6rqEDdr8AFbu8bVCNdvGXywUp-q3eAaxqlrE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Selective JAK2 Inhibition Specifically Decreases Hodgkin Lymphoma and Mediastinal Large B-cell Lymphoma Growth In Vitro and In Vivo</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>YANSHENG HAO ; BJOERN CHAPUY ; MONTI, Stefano ; SUN, Heather H ; RODIG, Scott J ; SHIPP, Margaret A</creator><creatorcontrib>YANSHENG HAO ; BJOERN CHAPUY ; MONTI, Stefano ; SUN, Heather H ; RODIG, Scott J ; SHIPP, Margaret A</creatorcontrib><description>Classical Hodgkin lymphoma (cHL) and primary mediastinal large B-cell lymphoma (MLBCL) share similar histologic, clinical, and genetic features. In recent studies, we found that disease-specific chromosome 9p24.1/JAK2 amplification increased JAK2 expression and activity in both cHL and MLBCL. This prompted us to assess the activity of a clinical grade JAK2 selective inhibitor, fedratinib (SAR302503/TG101348), in in vitro and in vivo model systems of cHL and MLBCL with defined JAK2 copy numbers. We used functional and immunohistochemical analyses to investigate the preclinical activity of fedratinib and associated biomarkers in cell lines and murine xenograft models of cHL and MLBCL with known 9p24.1/JAK2 copy number. Chemical JAK2 inhibition decreased the cellular proliferation of cHL and MLBCL cell lines and induced their apoptosis. There was an inverse correlation between 9p24.1/JAK2 copy number and the EC50 of fedratinib. Chemical JAK2 inhibition decreased phosphorylation of JAK2, STAT1, STAT3, and STAT6 and reduced the expression of additional downstream targets, including PD-L1, in a copy number-dependent manner. In murine xenograft models of cHL and MLBCL with 9p24.1/JAK2 amplification, chemical JAK2 inhibition significantly decreased JAK2/STAT signaling and tumor growth and prolonged survival. In in vitro and in vivo studies, pSTAT3 was an excellent biomarker of baseline JAK2 activity and the efficacy of chemical JAK2 inhibition. In in vitro and in vivo analyses, cHL and MLBCL with 9p24.1/JAK2 copy gain are sensitive to chemical JAK2 inhibition suggesting that clinical evaluation of JAK2 blockade is warranted.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.ccr-13-3007</identifier><identifier>PMID: 24610827</identifier><identifier>CODEN: CCREF4</identifier><language>eng</language><publisher>Philadelphia, PA: American Association for Cancer Research</publisher><subject>Animals ; Antineoplastic agents ; Apoptosis - drug effects ; Apoptosis - genetics ; B7-H1 Antigen - genetics ; B7-H1 Antigen - metabolism ; Biological and medical sciences ; Blotting, Western ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Gene Dosage - drug effects ; Gene Expression - drug effects ; Hematologic and hematopoietic diseases ; Hodgkin Disease - genetics ; Hodgkin Disease - metabolism ; Hodgkin Disease - prevention &amp; control ; Humans ; Immunohistochemistry ; Interleukin Receptor Common gamma Subunit - deficiency ; Interleukin Receptor Common gamma Subunit - genetics ; Janus Kinase 2 - antagonists &amp; inhibitors ; Janus Kinase 2 - genetics ; Janus Kinase 2 - metabolism ; Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis ; Lymphoma, Large B-Cell, Diffuse - genetics ; Lymphoma, Large B-Cell, Diffuse - metabolism ; Lymphoma, Large B-Cell, Diffuse - prevention &amp; control ; Male ; Mediastinal Neoplasms - genetics ; Mediastinal Neoplasms - metabolism ; Mediastinal Neoplasms - prevention &amp; control ; Medical sciences ; Mice, Inbred NOD ; Mice, Knockout ; Mice, SCID ; Pharmacology. Drug treatments ; Pyrrolidines - pharmacology ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction - drug effects ; STAT Transcription Factors - metabolism ; Sulfonamides - pharmacology ; Tumor Burden - drug effects ; Xenograft Model Antitumor Assays</subject><ispartof>Clinical cancer research, 2014-05, Vol.20 (10), p.2674-2683</ispartof><rights>2015 INIST-CNRS</rights><rights>2014 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-b2136968baf6afe9178e55571dd0f4f442d2bbc186523125f92063529519399a3</citedby><cites>FETCH-LOGICAL-c507t-b2136968baf6afe9178e55571dd0f4f442d2bbc186523125f92063529519399a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3354,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28509652$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24610827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>YANSHENG HAO</creatorcontrib><creatorcontrib>BJOERN CHAPUY</creatorcontrib><creatorcontrib>MONTI, Stefano</creatorcontrib><creatorcontrib>SUN, Heather H</creatorcontrib><creatorcontrib>RODIG, Scott J</creatorcontrib><creatorcontrib>SHIPP, Margaret A</creatorcontrib><title>Selective JAK2 Inhibition Specifically Decreases Hodgkin Lymphoma and Mediastinal Large B-cell Lymphoma Growth In Vitro and In Vivo</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>Classical Hodgkin lymphoma (cHL) and primary mediastinal large B-cell lymphoma (MLBCL) share similar histologic, clinical, and genetic features. In recent studies, we found that disease-specific chromosome 9p24.1/JAK2 amplification increased JAK2 expression and activity in both cHL and MLBCL. This prompted us to assess the activity of a clinical grade JAK2 selective inhibitor, fedratinib (SAR302503/TG101348), in in vitro and in vivo model systems of cHL and MLBCL with defined JAK2 copy numbers. We used functional and immunohistochemical analyses to investigate the preclinical activity of fedratinib and associated biomarkers in cell lines and murine xenograft models of cHL and MLBCL with known 9p24.1/JAK2 copy number. Chemical JAK2 inhibition decreased the cellular proliferation of cHL and MLBCL cell lines and induced their apoptosis. There was an inverse correlation between 9p24.1/JAK2 copy number and the EC50 of fedratinib. Chemical JAK2 inhibition decreased phosphorylation of JAK2, STAT1, STAT3, and STAT6 and reduced the expression of additional downstream targets, including PD-L1, in a copy number-dependent manner. In murine xenograft models of cHL and MLBCL with 9p24.1/JAK2 amplification, chemical JAK2 inhibition significantly decreased JAK2/STAT signaling and tumor growth and prolonged survival. In in vitro and in vivo studies, pSTAT3 was an excellent biomarker of baseline JAK2 activity and the efficacy of chemical JAK2 inhibition. In in vitro and in vivo analyses, cHL and MLBCL with 9p24.1/JAK2 copy gain are sensitive to chemical JAK2 inhibition suggesting that clinical evaluation of JAK2 blockade is warranted.</description><subject>Animals</subject><subject>Antineoplastic agents</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - genetics</subject><subject>B7-H1 Antigen - genetics</subject><subject>B7-H1 Antigen - metabolism</subject><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Gene Dosage - drug effects</subject><subject>Gene Expression - drug effects</subject><subject>Hematologic and hematopoietic diseases</subject><subject>Hodgkin Disease - genetics</subject><subject>Hodgkin Disease - metabolism</subject><subject>Hodgkin Disease - prevention &amp; control</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Interleukin Receptor Common gamma Subunit - deficiency</subject><subject>Interleukin Receptor Common gamma Subunit - genetics</subject><subject>Janus Kinase 2 - antagonists &amp; inhibitors</subject><subject>Janus Kinase 2 - genetics</subject><subject>Janus Kinase 2 - metabolism</subject><subject>Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis</subject><subject>Lymphoma, Large B-Cell, Diffuse - genetics</subject><subject>Lymphoma, Large B-Cell, Diffuse - metabolism</subject><subject>Lymphoma, Large B-Cell, Diffuse - prevention &amp; control</subject><subject>Male</subject><subject>Mediastinal Neoplasms - genetics</subject><subject>Mediastinal Neoplasms - metabolism</subject><subject>Mediastinal Neoplasms - prevention &amp; control</subject><subject>Medical sciences</subject><subject>Mice, Inbred NOD</subject><subject>Mice, Knockout</subject><subject>Mice, SCID</subject><subject>Pharmacology. Drug treatments</subject><subject>Pyrrolidines - pharmacology</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Signal Transduction - drug effects</subject><subject>STAT Transcription Factors - metabolism</subject><subject>Sulfonamides - pharmacology</subject><subject>Tumor Burden - drug effects</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUlPwzAUhC0EYin8BJAvHAN-XrJckKDsFCGxXS3HsVtDGld2KOqZP07Czsm2_M08vRmEtoHsAYh8H0iWJ4Qzuqd1SIAljJBsCa2DEFnCaCqWu_s3s4Y2YnwiBDgQvorWKE-B5DRbR293pja6dXODLw-vKL5oJq50rfMNvpsZ7azTqq4X-NjoYFQ0EZ_7avzsGjxaTGcTP1VYNRW-NpVTsXWNqvFIhbHBR4k2df1LnQX_2k46f_zo2uA_VB-Pud9EK1bV0Wx9nQP0cHpyPzxPRjdnF8PDUaIFydqkpMDSIs1LZVNlTQFZbkS3LVQVsdxyTitalhryVFAGVNiCkpQJWggoWFEoNkAHn76zl3JqKm2aNqhazoKbqrCQXjn5_6dxEzn2c8lJzrMuxwESnwY6-BiDsT9aILJvRfaJyz5xORzeSmCyb6XT7fwd_KP6rqEDdr8AFbu8bVCNdvGXywUp-q3eAaxqlrE</recordid><startdate>20140515</startdate><enddate>20140515</enddate><creator>YANSHENG HAO</creator><creator>BJOERN CHAPUY</creator><creator>MONTI, Stefano</creator><creator>SUN, Heather H</creator><creator>RODIG, Scott J</creator><creator>SHIPP, Margaret A</creator><general>American Association for Cancer Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20140515</creationdate><title>Selective JAK2 Inhibition Specifically Decreases Hodgkin Lymphoma and Mediastinal Large B-cell Lymphoma Growth In Vitro and In Vivo</title><author>YANSHENG HAO ; BJOERN CHAPUY ; MONTI, Stefano ; SUN, Heather H ; RODIG, Scott J ; SHIPP, Margaret A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-b2136968baf6afe9178e55571dd0f4f442d2bbc186523125f92063529519399a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Antineoplastic agents</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - genetics</topic><topic>B7-H1 Antigen - genetics</topic><topic>B7-H1 Antigen - metabolism</topic><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Gene Dosage - drug effects</topic><topic>Gene Expression - drug effects</topic><topic>Hematologic and hematopoietic diseases</topic><topic>Hodgkin Disease - genetics</topic><topic>Hodgkin Disease - metabolism</topic><topic>Hodgkin Disease - prevention &amp; control</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Interleukin Receptor Common gamma Subunit - deficiency</topic><topic>Interleukin Receptor Common gamma Subunit - genetics</topic><topic>Janus Kinase 2 - antagonists &amp; inhibitors</topic><topic>Janus Kinase 2 - genetics</topic><topic>Janus Kinase 2 - metabolism</topic><topic>Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis</topic><topic>Lymphoma, Large B-Cell, Diffuse - genetics</topic><topic>Lymphoma, Large B-Cell, Diffuse - metabolism</topic><topic>Lymphoma, Large B-Cell, Diffuse - prevention &amp; control</topic><topic>Male</topic><topic>Mediastinal Neoplasms - genetics</topic><topic>Mediastinal Neoplasms - metabolism</topic><topic>Mediastinal Neoplasms - prevention &amp; control</topic><topic>Medical sciences</topic><topic>Mice, Inbred NOD</topic><topic>Mice, Knockout</topic><topic>Mice, SCID</topic><topic>Pharmacology. Drug treatments</topic><topic>Pyrrolidines - pharmacology</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Signal Transduction - drug effects</topic><topic>STAT Transcription Factors - metabolism</topic><topic>Sulfonamides - pharmacology</topic><topic>Tumor Burden - drug effects</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YANSHENG HAO</creatorcontrib><creatorcontrib>BJOERN CHAPUY</creatorcontrib><creatorcontrib>MONTI, Stefano</creatorcontrib><creatorcontrib>SUN, Heather H</creatorcontrib><creatorcontrib>RODIG, Scott J</creatorcontrib><creatorcontrib>SHIPP, Margaret A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YANSHENG HAO</au><au>BJOERN CHAPUY</au><au>MONTI, Stefano</au><au>SUN, Heather H</au><au>RODIG, Scott J</au><au>SHIPP, Margaret A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective JAK2 Inhibition Specifically Decreases Hodgkin Lymphoma and Mediastinal Large B-cell Lymphoma Growth In Vitro and In Vivo</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2014-05-15</date><risdate>2014</risdate><volume>20</volume><issue>10</issue><spage>2674</spage><epage>2683</epage><pages>2674-2683</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><coden>CCREF4</coden><abstract>Classical Hodgkin lymphoma (cHL) and primary mediastinal large B-cell lymphoma (MLBCL) share similar histologic, clinical, and genetic features. In recent studies, we found that disease-specific chromosome 9p24.1/JAK2 amplification increased JAK2 expression and activity in both cHL and MLBCL. This prompted us to assess the activity of a clinical grade JAK2 selective inhibitor, fedratinib (SAR302503/TG101348), in in vitro and in vivo model systems of cHL and MLBCL with defined JAK2 copy numbers. We used functional and immunohistochemical analyses to investigate the preclinical activity of fedratinib and associated biomarkers in cell lines and murine xenograft models of cHL and MLBCL with known 9p24.1/JAK2 copy number. Chemical JAK2 inhibition decreased the cellular proliferation of cHL and MLBCL cell lines and induced their apoptosis. There was an inverse correlation between 9p24.1/JAK2 copy number and the EC50 of fedratinib. Chemical JAK2 inhibition decreased phosphorylation of JAK2, STAT1, STAT3, and STAT6 and reduced the expression of additional downstream targets, including PD-L1, in a copy number-dependent manner. In murine xenograft models of cHL and MLBCL with 9p24.1/JAK2 amplification, chemical JAK2 inhibition significantly decreased JAK2/STAT signaling and tumor growth and prolonged survival. In in vitro and in vivo studies, pSTAT3 was an excellent biomarker of baseline JAK2 activity and the efficacy of chemical JAK2 inhibition. In in vitro and in vivo analyses, cHL and MLBCL with 9p24.1/JAK2 copy gain are sensitive to chemical JAK2 inhibition suggesting that clinical evaluation of JAK2 blockade is warranted.</abstract><cop>Philadelphia, PA</cop><pub>American Association for Cancer Research</pub><pmid>24610827</pmid><doi>10.1158/1078-0432.ccr-13-3007</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2014-05, Vol.20 (10), p.2674-2683
issn 1078-0432
1557-3265
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4084704
source MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Antineoplastic agents
Apoptosis - drug effects
Apoptosis - genetics
B7-H1 Antigen - genetics
B7-H1 Antigen - metabolism
Biological and medical sciences
Blotting, Western
Cell Line, Tumor
Cell Proliferation - drug effects
Gene Dosage - drug effects
Gene Expression - drug effects
Hematologic and hematopoietic diseases
Hodgkin Disease - genetics
Hodgkin Disease - metabolism
Hodgkin Disease - prevention & control
Humans
Immunohistochemistry
Interleukin Receptor Common gamma Subunit - deficiency
Interleukin Receptor Common gamma Subunit - genetics
Janus Kinase 2 - antagonists & inhibitors
Janus Kinase 2 - genetics
Janus Kinase 2 - metabolism
Leukemias. Malignant lymphomas. Malignant reticulosis. Myelofibrosis
Lymphoma, Large B-Cell, Diffuse - genetics
Lymphoma, Large B-Cell, Diffuse - metabolism
Lymphoma, Large B-Cell, Diffuse - prevention & control
Male
Mediastinal Neoplasms - genetics
Mediastinal Neoplasms - metabolism
Mediastinal Neoplasms - prevention & control
Medical sciences
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
Pharmacology. Drug treatments
Pyrrolidines - pharmacology
Reverse Transcriptase Polymerase Chain Reaction
Signal Transduction - drug effects
STAT Transcription Factors - metabolism
Sulfonamides - pharmacology
Tumor Burden - drug effects
Xenograft Model Antitumor Assays
title Selective JAK2 Inhibition Specifically Decreases Hodgkin Lymphoma and Mediastinal Large B-cell Lymphoma Growth In Vitro and In Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20JAK2%20Inhibition%20Specifically%20Decreases%20Hodgkin%20Lymphoma%20and%20Mediastinal%20Large%20B-cell%20Lymphoma%20Growth%20In%20Vitro%20and%20In%20Vivo&rft.jtitle=Clinical%20cancer%20research&rft.au=YANSHENG%20HAO&rft.date=2014-05-15&rft.volume=20&rft.issue=10&rft.spage=2674&rft.epage=2683&rft.pages=2674-2683&rft.issn=1078-0432&rft.eissn=1557-3265&rft.coden=CCREF4&rft_id=info:doi/10.1158/1078-0432.ccr-13-3007&rft_dat=%3Cpubmed_cross%3E24610827%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24610827&rfr_iscdi=true