A novel microneedle array for the treatment of hydrocephalus
We present a microfabricated 10 by 10 array of microneedles for the treatment of a neurological disease called communicating hydrocephalus. Together with the previously reported microvalve array, the current implantable microneedle array completes the microfabricated arachnoid granulations (MAGs) th...
Gespeichert in:
Veröffentlicht in: | Microsystem technologies : sensors, actuators, systems integration actuators, systems integration, 2014-06, Vol.20 (6), p.1169-1179 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1179 |
---|---|
container_issue | 6 |
container_start_page | 1169 |
container_title | Microsystem technologies : sensors, actuators, systems integration |
container_volume | 20 |
creator | Oh, Jonghyun Liu, Kewei Medina, Tim Kralick, Francis Noh, Hongseok (Moses) |
description | We present a microfabricated 10 by 10 array of microneedles for the treatment of a neurological disease called communicating hydrocephalus. Together with the previously reported microvalve array, the current implantable microneedle array completes the microfabricated arachnoid granulations (MAGs) that mimic the function of normal arachnoid granulations. The microneedle array was designed to enable the fixation of the MAGs through dura mater membrane in the brain and thus provide a conduit for the flow of cerebrospinal fluid. Cone-shaped microneedles with hollow channels were fabricated using a series of microfabrication techniques: SU-8 photolithography for tapered geometry, reactive ion etching for sharpening the microneedles, 248 nm deep UV excimer laser machining for creating through-hole inside the microneedles, and metal sputtering for improved rigidity. Puncture tests were conducted using porcine dura mater and the results showed that the fabricated microneedle array is strong enough to pierce the dura mater. The in vitro biocompatibility test result showed that none of the 100 outlets of the microneedles exposed to the bloodstream were clogged significantly by blood cells. We believe that these test results demonstrate the potential use of the microneedle array as a new treatment of hydrocephalus. |
doi_str_mv | 10.1007/s00542-013-1988-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4084597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826605073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-507e26ab06b59e5ebb77e972b06253266eb410e8fc893b090daabe22b850a0b03</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl4ewI10I7ipnqRJk4AIMngDwY2uQ9I5nam0zZi0wry9kRlvG1eBnO8_5-cj5JjCOQWQFxFAcJYDLXKqlcr5FplQXrCcKqG2yQQ0L3MJstwj-zG-QspoVeySPSZSpoByQi6vs96_Y5t1TRV8jzhrMbMh2FVW-5ANC8yGgHbosB8yX2eL1Sz4CpcL247xkOzUto14tHkPyMvtzfP0Pn98unuYXj_mFZdsyAVIZKV1UDqhUaBzUqKWLH0wUbCyRMcpoKorpQsHGmbWOmTMKQEWHBQH5Gq9dzm6DmdV6hJsa5ah6WxYGW8b83fSNwsz9--Gg-JCy7TgbLMg-LcR42C6JlbYtrZHP0ZDVWoBqWeRULpGk44YA9bfZyiYT-tmbd0kg-bTuuEpc_K733fiS3MCTjeAjZVt62D7qok_nBJaAaeJY2suplE_x2Be_Rj65Paf6x9hkZp5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826605073</pqid></control><display><type>article</type><title>A novel microneedle array for the treatment of hydrocephalus</title><source>SpringerLink Journals</source><creator>Oh, Jonghyun ; Liu, Kewei ; Medina, Tim ; Kralick, Francis ; Noh, Hongseok (Moses)</creator><creatorcontrib>Oh, Jonghyun ; Liu, Kewei ; Medina, Tim ; Kralick, Francis ; Noh, Hongseok (Moses)</creatorcontrib><description>We present a microfabricated 10 by 10 array of microneedles for the treatment of a neurological disease called communicating hydrocephalus. Together with the previously reported microvalve array, the current implantable microneedle array completes the microfabricated arachnoid granulations (MAGs) that mimic the function of normal arachnoid granulations. The microneedle array was designed to enable the fixation of the MAGs through dura mater membrane in the brain and thus provide a conduit for the flow of cerebrospinal fluid. Cone-shaped microneedles with hollow channels were fabricated using a series of microfabrication techniques: SU-8 photolithography for tapered geometry, reactive ion etching for sharpening the microneedles, 248 nm deep UV excimer laser machining for creating through-hole inside the microneedles, and metal sputtering for improved rigidity. Puncture tests were conducted using porcine dura mater and the results showed that the fabricated microneedle array is strong enough to pierce the dura mater. The in vitro biocompatibility test result showed that none of the 100 outlets of the microneedles exposed to the bloodstream were clogged significantly by blood cells. We believe that these test results demonstrate the potential use of the microneedle array as a new treatment of hydrocephalus.</description><identifier>ISSN: 0946-7076</identifier><identifier>EISSN: 1432-1858</identifier><identifier>DOI: 10.1007/s00542-013-1988-4</identifier><identifier>PMID: 25013306</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and medical sciences ; Electronics and Microelectronics ; Engineering ; Instrumentation ; Mechanical Engineering ; Medical sciences ; Nanotechnology ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Technical Paper ; Technology. Biomaterials. Equipments. Material. Instrumentation</subject><ispartof>Microsystem technologies : sensors, actuators, systems integration, 2014-06, Vol.20 (6), p.1169-1179</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-507e26ab06b59e5ebb77e972b06253266eb410e8fc893b090daabe22b850a0b03</citedby><cites>FETCH-LOGICAL-c472t-507e26ab06b59e5ebb77e972b06253266eb410e8fc893b090daabe22b850a0b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00542-013-1988-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00542-013-1988-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28598041$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25013306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Jonghyun</creatorcontrib><creatorcontrib>Liu, Kewei</creatorcontrib><creatorcontrib>Medina, Tim</creatorcontrib><creatorcontrib>Kralick, Francis</creatorcontrib><creatorcontrib>Noh, Hongseok (Moses)</creatorcontrib><title>A novel microneedle array for the treatment of hydrocephalus</title><title>Microsystem technologies : sensors, actuators, systems integration</title><addtitle>Microsyst Technol</addtitle><addtitle>Microsyst Technol</addtitle><description>We present a microfabricated 10 by 10 array of microneedles for the treatment of a neurological disease called communicating hydrocephalus. Together with the previously reported microvalve array, the current implantable microneedle array completes the microfabricated arachnoid granulations (MAGs) that mimic the function of normal arachnoid granulations. The microneedle array was designed to enable the fixation of the MAGs through dura mater membrane in the brain and thus provide a conduit for the flow of cerebrospinal fluid. Cone-shaped microneedles with hollow channels were fabricated using a series of microfabrication techniques: SU-8 photolithography for tapered geometry, reactive ion etching for sharpening the microneedles, 248 nm deep UV excimer laser machining for creating through-hole inside the microneedles, and metal sputtering for improved rigidity. Puncture tests were conducted using porcine dura mater and the results showed that the fabricated microneedle array is strong enough to pierce the dura mater. The in vitro biocompatibility test result showed that none of the 100 outlets of the microneedles exposed to the bloodstream were clogged significantly by blood cells. We believe that these test results demonstrate the potential use of the microneedle array as a new treatment of hydrocephalus.</description><subject>Biological and medical sciences</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Instrumentation</subject><subject>Mechanical Engineering</subject><subject>Medical sciences</subject><subject>Nanotechnology</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Technical Paper</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><issn>0946-7076</issn><issn>1432-1858</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOl4ewI10I7ipnqRJk4AIMngDwY2uQ9I5nam0zZi0wry9kRlvG1eBnO8_5-cj5JjCOQWQFxFAcJYDLXKqlcr5FplQXrCcKqG2yQQ0L3MJstwj-zG-QspoVeySPSZSpoByQi6vs96_Y5t1TRV8jzhrMbMh2FVW-5ANC8yGgHbosB8yX2eL1Sz4CpcL247xkOzUto14tHkPyMvtzfP0Pn98unuYXj_mFZdsyAVIZKV1UDqhUaBzUqKWLH0wUbCyRMcpoKorpQsHGmbWOmTMKQEWHBQH5Gq9dzm6DmdV6hJsa5ah6WxYGW8b83fSNwsz9--Gg-JCy7TgbLMg-LcR42C6JlbYtrZHP0ZDVWoBqWeRULpGk44YA9bfZyiYT-tmbd0kg-bTuuEpc_K733fiS3MCTjeAjZVt62D7qok_nBJaAaeJY2suplE_x2Be_Rj65Paf6x9hkZp5</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Oh, Jonghyun</creator><creator>Liu, Kewei</creator><creator>Medina, Tim</creator><creator>Kralick, Francis</creator><creator>Noh, Hongseok (Moses)</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140601</creationdate><title>A novel microneedle array for the treatment of hydrocephalus</title><author>Oh, Jonghyun ; Liu, Kewei ; Medina, Tim ; Kralick, Francis ; Noh, Hongseok (Moses)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-507e26ab06b59e5ebb77e972b06253266eb410e8fc893b090daabe22b850a0b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biological and medical sciences</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Instrumentation</topic><topic>Mechanical Engineering</topic><topic>Medical sciences</topic><topic>Nanotechnology</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Technical Paper</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Jonghyun</creatorcontrib><creatorcontrib>Liu, Kewei</creatorcontrib><creatorcontrib>Medina, Tim</creatorcontrib><creatorcontrib>Kralick, Francis</creatorcontrib><creatorcontrib>Noh, Hongseok (Moses)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Jonghyun</au><au>Liu, Kewei</au><au>Medina, Tim</au><au>Kralick, Francis</au><au>Noh, Hongseok (Moses)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel microneedle array for the treatment of hydrocephalus</atitle><jtitle>Microsystem technologies : sensors, actuators, systems integration</jtitle><stitle>Microsyst Technol</stitle><addtitle>Microsyst Technol</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>20</volume><issue>6</issue><spage>1169</spage><epage>1179</epage><pages>1169-1179</pages><issn>0946-7076</issn><eissn>1432-1858</eissn><abstract>We present a microfabricated 10 by 10 array of microneedles for the treatment of a neurological disease called communicating hydrocephalus. Together with the previously reported microvalve array, the current implantable microneedle array completes the microfabricated arachnoid granulations (MAGs) that mimic the function of normal arachnoid granulations. The microneedle array was designed to enable the fixation of the MAGs through dura mater membrane in the brain and thus provide a conduit for the flow of cerebrospinal fluid. Cone-shaped microneedles with hollow channels were fabricated using a series of microfabrication techniques: SU-8 photolithography for tapered geometry, reactive ion etching for sharpening the microneedles, 248 nm deep UV excimer laser machining for creating through-hole inside the microneedles, and metal sputtering for improved rigidity. Puncture tests were conducted using porcine dura mater and the results showed that the fabricated microneedle array is strong enough to pierce the dura mater. The in vitro biocompatibility test result showed that none of the 100 outlets of the microneedles exposed to the bloodstream were clogged significantly by blood cells. We believe that these test results demonstrate the potential use of the microneedle array as a new treatment of hydrocephalus.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25013306</pmid><doi>10.1007/s00542-013-1988-4</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-7076 |
ispartof | Microsystem technologies : sensors, actuators, systems integration, 2014-06, Vol.20 (6), p.1169-1179 |
issn | 0946-7076 1432-1858 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4084597 |
source | SpringerLink Journals |
subjects | Biological and medical sciences Electronics and Microelectronics Engineering Instrumentation Mechanical Engineering Medical sciences Nanotechnology Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Technical Paper Technology. Biomaterials. Equipments. Material. Instrumentation |
title | A novel microneedle array for the treatment of hydrocephalus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20microneedle%20array%20for%20the%20treatment%20of%20hydrocephalus&rft.jtitle=Microsystem%20technologies%20:%20sensors,%20actuators,%20systems%20integration&rft.au=Oh,%20Jonghyun&rft.date=2014-06-01&rft.volume=20&rft.issue=6&rft.spage=1169&rft.epage=1179&rft.pages=1169-1179&rft.issn=0946-7076&rft.eissn=1432-1858&rft_id=info:doi/10.1007/s00542-013-1988-4&rft_dat=%3Cproquest_pubme%3E1826605073%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826605073&rft_id=info:pmid/25013306&rfr_iscdi=true |