Conformational B-Cell Epitopes Prediction from Sequences Using Cost-Sensitive Ensemble Classifiers and Spatial Clustering
B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming an...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2014-01, Vol.2014 (2014), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2014 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2014 |
creator | Zhang, Jian Zhao, Xiaowei Sun, Pingping Gao, Bo Ma, Zhiqiang |
description | B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming and resource intensive, which may benefit from the computational approaches to identify B-cell epitopes. In this paper, a novel cost-sensitive ensemble algorithm is proposed for predicting the antigenic determinant residues and then a spatial clustering algorithm is adopted to identify the potential epitopes. Firstly, we explore various discriminative features from primary sequences. Secondly, cost-sensitive ensemble scheme is introduced to deal with imbalanced learning problem. Thirdly, we adopt spatial algorithm to tell which residues may potentially form the epitopes. Based on the strategies mentioned above, a new predictor, called CBEP (conformational B-cell epitopes prediction), is proposed in this study. CBEP achieves good prediction performance with the mean AUC scores (AUCs) of 0.721 and 0.703 on two benchmark datasets (bound and unbound) using the leave-one-out cross-validation (LOOCV). When compared with previous prediction tools, CBEP produces higher sensitivity and comparable specificity values. A web server named CBEP which implements the proposed method is available for academic use. |
doi_str_mv | 10.1155/2014/689219 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4083607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A427024062</galeid><sourcerecordid>A427024062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-47944ca493ca9c3d2ac28fd9c6dbc7c9e104424310dd16b206f8cc5f961d2ca53</originalsourceid><addsrcrecordid>eNqFks1rFTEUxQdRbKlduVYG3IhlbL5nshHq8KpCQeHZdchL7rymzCRjMlPpf2-Gqc-PTbNJ4PxyknvvKYqXGL3HmPNzgjA7F40kWD4pjgnFrBKY4aeHM6VHxWlKtyivBgskxfPiiHDEuJD4uLhvg-9CHPTkgtd9-bFqoe_LzeimMEIqv0Wwzixi2cUwlFv4MYM3WblOzu_LNqSp2oJPbnJ3UG58gmHXQ9n2OiXXOYip1N6W2zG_kP3bfk4TxHz1RfGs032C04f9pLi-3HxvP1dXXz99aS-uKsNJPVWslowZzSQ1WhpqiTak6aw0wu5MbSRgxBhhFCNrsdgRJLrGGN5JgS0xmtOT4sPqO867AawBP0XdqzG6Qcd7FbRT_yre3ah9uFMMNVSgOhu8fTCIIRefJjW4ZHKXtIcwJ4UFxoLyumGPo5zVnFEiSUbf_IfehjnmESwUJw1tJMd_qL3uQbk8qvxFs5iqC0ZqRBgSi9fZSpkYUorQHarDSC0xUUtM1BqTTL_-uyEH9ncoMvBuBW6ct_qne8Tt1QpDRqDTB5hJVOfu_QJeTs4k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552838951</pqid></control><display><type>article</type><title>Conformational B-Cell Epitopes Prediction from Sequences Using Cost-Sensitive Ensemble Classifiers and Spatial Clustering</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Zhang, Jian ; Zhao, Xiaowei ; Sun, Pingping ; Gao, Bo ; Ma, Zhiqiang</creator><contributor>Cai, Yudong</contributor><creatorcontrib>Zhang, Jian ; Zhao, Xiaowei ; Sun, Pingping ; Gao, Bo ; Ma, Zhiqiang ; Cai, Yudong</creatorcontrib><description>B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming and resource intensive, which may benefit from the computational approaches to identify B-cell epitopes. In this paper, a novel cost-sensitive ensemble algorithm is proposed for predicting the antigenic determinant residues and then a spatial clustering algorithm is adopted to identify the potential epitopes. Firstly, we explore various discriminative features from primary sequences. Secondly, cost-sensitive ensemble scheme is introduced to deal with imbalanced learning problem. Thirdly, we adopt spatial algorithm to tell which residues may potentially form the epitopes. Based on the strategies mentioned above, a new predictor, called CBEP (conformational B-cell epitopes prediction), is proposed in this study. CBEP achieves good prediction performance with the mean AUC scores (AUCs) of 0.721 and 0.703 on two benchmark datasets (bound and unbound) using the leave-one-out cross-validation (LOOCV). When compared with previous prediction tools, CBEP produces higher sensitivity and comparable specificity values. A web server named CBEP which implements the proposed method is available for academic use.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2014/689219</identifier><identifier>PMID: 25045691</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Antigenic determinants ; Antigens - genetics ; Antigens - immunology ; B cells ; Base Sequence ; Computational Biology ; Cost-Benefit Analysis ; Economic aspects ; Epitopes, B-Lymphocyte - genetics ; Epitopes, B-Lymphocyte - immunology ; Genetic aspects ; Humans ; Immunity, Innate ; Internet ; Methods ; Molecular Conformation ; Physiological aspects ; Proteins ; Science ; Software ; Studies</subject><ispartof>BioMed research international, 2014-01, Vol.2014 (2014), p.1-12</ispartof><rights>Copyright © 2014 Jian Zhang et al.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 Jian Zhang et al. Jian Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Jian Zhang et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-47944ca493ca9c3d2ac28fd9c6dbc7c9e104424310dd16b206f8cc5f961d2ca53</citedby><cites>FETCH-LOGICAL-c527t-47944ca493ca9c3d2ac28fd9c6dbc7c9e104424310dd16b206f8cc5f961d2ca53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083607/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083607/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25045691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cai, Yudong</contributor><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhao, Xiaowei</creatorcontrib><creatorcontrib>Sun, Pingping</creatorcontrib><creatorcontrib>Gao, Bo</creatorcontrib><creatorcontrib>Ma, Zhiqiang</creatorcontrib><title>Conformational B-Cell Epitopes Prediction from Sequences Using Cost-Sensitive Ensemble Classifiers and Spatial Clustering</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming and resource intensive, which may benefit from the computational approaches to identify B-cell epitopes. In this paper, a novel cost-sensitive ensemble algorithm is proposed for predicting the antigenic determinant residues and then a spatial clustering algorithm is adopted to identify the potential epitopes. Firstly, we explore various discriminative features from primary sequences. Secondly, cost-sensitive ensemble scheme is introduced to deal with imbalanced learning problem. Thirdly, we adopt spatial algorithm to tell which residues may potentially form the epitopes. Based on the strategies mentioned above, a new predictor, called CBEP (conformational B-cell epitopes prediction), is proposed in this study. CBEP achieves good prediction performance with the mean AUC scores (AUCs) of 0.721 and 0.703 on two benchmark datasets (bound and unbound) using the leave-one-out cross-validation (LOOCV). When compared with previous prediction tools, CBEP produces higher sensitivity and comparable specificity values. A web server named CBEP which implements the proposed method is available for academic use.</description><subject>Algorithms</subject><subject>Antigenic determinants</subject><subject>Antigens - genetics</subject><subject>Antigens - immunology</subject><subject>B cells</subject><subject>Base Sequence</subject><subject>Computational Biology</subject><subject>Cost-Benefit Analysis</subject><subject>Economic aspects</subject><subject>Epitopes, B-Lymphocyte - genetics</subject><subject>Epitopes, B-Lymphocyte - immunology</subject><subject>Genetic aspects</subject><subject>Humans</subject><subject>Immunity, Innate</subject><subject>Internet</subject><subject>Methods</subject><subject>Molecular Conformation</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Science</subject><subject>Software</subject><subject>Studies</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFks1rFTEUxQdRbKlduVYG3IhlbL5nshHq8KpCQeHZdchL7rymzCRjMlPpf2-Gqc-PTbNJ4PxyknvvKYqXGL3HmPNzgjA7F40kWD4pjgnFrBKY4aeHM6VHxWlKtyivBgskxfPiiHDEuJD4uLhvg-9CHPTkgtd9-bFqoe_LzeimMEIqv0Wwzixi2cUwlFv4MYM3WblOzu_LNqSp2oJPbnJ3UG58gmHXQ9n2OiXXOYip1N6W2zG_kP3bfk4TxHz1RfGs032C04f9pLi-3HxvP1dXXz99aS-uKsNJPVWslowZzSQ1WhpqiTak6aw0wu5MbSRgxBhhFCNrsdgRJLrGGN5JgS0xmtOT4sPqO867AawBP0XdqzG6Qcd7FbRT_yre3ah9uFMMNVSgOhu8fTCIIRefJjW4ZHKXtIcwJ4UFxoLyumGPo5zVnFEiSUbf_IfehjnmESwUJw1tJMd_qL3uQbk8qvxFs5iqC0ZqRBgSi9fZSpkYUorQHarDSC0xUUtM1BqTTL_-uyEH9ncoMvBuBW6ct_qne8Tt1QpDRqDTB5hJVOfu_QJeTs4k</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Zhang, Jian</creator><creator>Zhao, Xiaowei</creator><creator>Sun, Pingping</creator><creator>Gao, Bo</creator><creator>Ma, Zhiqiang</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Conformational B-Cell Epitopes Prediction from Sequences Using Cost-Sensitive Ensemble Classifiers and Spatial Clustering</title><author>Zhang, Jian ; Zhao, Xiaowei ; Sun, Pingping ; Gao, Bo ; Ma, Zhiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-47944ca493ca9c3d2ac28fd9c6dbc7c9e104424310dd16b206f8cc5f961d2ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Antigenic determinants</topic><topic>Antigens - genetics</topic><topic>Antigens - immunology</topic><topic>B cells</topic><topic>Base Sequence</topic><topic>Computational Biology</topic><topic>Cost-Benefit Analysis</topic><topic>Economic aspects</topic><topic>Epitopes, B-Lymphocyte - genetics</topic><topic>Epitopes, B-Lymphocyte - immunology</topic><topic>Genetic aspects</topic><topic>Humans</topic><topic>Immunity, Innate</topic><topic>Internet</topic><topic>Methods</topic><topic>Molecular Conformation</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Science</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhao, Xiaowei</creatorcontrib><creatorcontrib>Sun, Pingping</creatorcontrib><creatorcontrib>Gao, Bo</creatorcontrib><creatorcontrib>Ma, Zhiqiang</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jian</au><au>Zhao, Xiaowei</au><au>Sun, Pingping</au><au>Gao, Bo</au><au>Ma, Zhiqiang</au><au>Cai, Yudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational B-Cell Epitopes Prediction from Sequences Using Cost-Sensitive Ensemble Classifiers and Spatial Clustering</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>B-cell epitopes are regions of the antigen surface which can be recognized by certain antibodies and elicit the immune response. Identification of epitopes for a given antigen chain finds vital applications in vaccine and drug research. Experimental prediction of B-cell epitopes is time-consuming and resource intensive, which may benefit from the computational approaches to identify B-cell epitopes. In this paper, a novel cost-sensitive ensemble algorithm is proposed for predicting the antigenic determinant residues and then a spatial clustering algorithm is adopted to identify the potential epitopes. Firstly, we explore various discriminative features from primary sequences. Secondly, cost-sensitive ensemble scheme is introduced to deal with imbalanced learning problem. Thirdly, we adopt spatial algorithm to tell which residues may potentially form the epitopes. Based on the strategies mentioned above, a new predictor, called CBEP (conformational B-cell epitopes prediction), is proposed in this study. CBEP achieves good prediction performance with the mean AUC scores (AUCs) of 0.721 and 0.703 on two benchmark datasets (bound and unbound) using the leave-one-out cross-validation (LOOCV). When compared with previous prediction tools, CBEP produces higher sensitivity and comparable specificity values. A web server named CBEP which implements the proposed method is available for academic use.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>25045691</pmid><doi>10.1155/2014/689219</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2014-01, Vol.2014 (2014), p.1-12 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4083607 |
source | MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Algorithms Antigenic determinants Antigens - genetics Antigens - immunology B cells Base Sequence Computational Biology Cost-Benefit Analysis Economic aspects Epitopes, B-Lymphocyte - genetics Epitopes, B-Lymphocyte - immunology Genetic aspects Humans Immunity, Innate Internet Methods Molecular Conformation Physiological aspects Proteins Science Software Studies |
title | Conformational B-Cell Epitopes Prediction from Sequences Using Cost-Sensitive Ensemble Classifiers and Spatial Clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20B-Cell%20Epitopes%20Prediction%20from%20Sequences%20Using%20Cost-Sensitive%20Ensemble%20Classifiers%20and%20Spatial%20Clustering&rft.jtitle=BioMed%20research%20international&rft.au=Zhang,%20Jian&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2014/689219&rft_dat=%3Cgale_pubme%3EA427024062%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552838951&rft_id=info:pmid/25045691&rft_galeid=A427024062&rfr_iscdi=true |