Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction

The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2014-01, Vol.2014 (2014), p.1-10
Hauptverfasser: Sun, Liguo, Li, Hongguo, Qu, Ling, Zhu, Rui, Fan, Xiangli, Xue, Yingsen, Xie, Zhenghong, Fan, Hongbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2014
container_start_page 1
container_title BioMed research international
container_volume 2014
creator Sun, Liguo
Li, Hongguo
Qu, Ling
Zhu, Rui
Fan, Xiangli
Xue, Yingsen
Xie, Zhenghong
Fan, Hongbin
description The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM) showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3) gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs) on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM) components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface.
doi_str_mv 10.1155/2014/816979
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4075190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A427024573</galeid><sourcerecordid>A427024573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-bde6a359f45f32a048b355da223d2cb623f4bd6d8492f7344a85e1db3d0e2ebe3</originalsourceid><addsrcrecordid>eNqN0k1v0zAYB_AIgdg0duIMssQFgcL8nuSCVKqNDlXi0MHVcuLHrUdiDzsZKl-Cr4yrjvJyYb7Ykn_6P_ajpyieEvyGECHOKCb8rCayqZoHxTFlhJeScPLwcGbsqDhN6RrnlR1u5OPiiApMGlxXx8WPy2EIrevddzBoCX50ty5OCX2GbgwRBY_mm-BNDG50Hq2m3uoRysVW91MMPp_RrHOmXLn-C7pwbXYeLbZtdAatOm1t6A2yOejKpTRBee7XzgPEXTG31kMuWL4LHtCHyXejC_5J8cjqPsHp3X5SfLo4v5ovyuXH95fz2bLshMRj2RqQmonGcmEZ1ZjXLRPCaEqZoV0rKbO8NdLUvKG2YpzrWgAxLTMYKLTAToq3-9ybqR3AdPkhUffqJrpBx60K2qm_b7zbqHW4VRxXIvcuB7y8C4jh6wRpVINLHfS99hCmpIjklDaiquQ9KCGSiVrcgwouSN0wKTJ98Q-9DlP0uWlZCcplw6vqt1rrHpTzNuTfdLtQNeO0wpSLimX1eq-6GFKKYA-NIFjt5kzt5kzt5yzr53_27mB_TVUGr_Zg47zR39x_0p7tMWQCVh-wwJgLxn4CxUjkQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552469477</pqid></control><display><type>article</type><title>Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Sun, Liguo ; Li, Hongguo ; Qu, Ling ; Zhu, Rui ; Fan, Xiangli ; Xue, Yingsen ; Xie, Zhenghong ; Fan, Hongbin</creator><contributor>Pei, Guo-Xian</contributor><creatorcontrib>Sun, Liguo ; Li, Hongguo ; Qu, Ling ; Zhu, Rui ; Fan, Xiangli ; Xue, Yingsen ; Xie, Zhenghong ; Fan, Hongbin ; Pei, Guo-Xian</creatorcontrib><description>The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM) showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3) gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs) on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM) components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2014/816979</identifier><identifier>PMID: 25019087</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Adsorption ; Animals ; Biocompatible Materials - chemical synthesis ; Biomechanics ; Bone and Bones - cytology ; Bone and Bones - physiology ; Bone surgery ; Cables ; Cell Adhesion - physiology ; Cell Differentiation - physiology ; Cell growth ; Cell Proliferation - physiology ; Cells, Cultured ; Chondroitin sulfate ; Chondroitin Sulfates - chemistry ; Collagen ; Collagens ; Culture ; Differentiation ; Fibroins - chemistry ; Genes ; Genetic Vectors - genetics ; Grafting ; Health aspects ; Hospitals ; Hyaluronic Acid - chemistry ; Lentivirus ; Lentivirus - genetics ; Ligaments ; Ligaments - cytology ; Ligaments - physiology ; Materials Testing ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - physiology ; Orthopedic surgery ; Rabbits ; Scaffolds ; Silk ; Tensile strength ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds ; Transforming Growth Factor beta3 - genetics</subject><ispartof>BioMed research international, 2014-01, Vol.2014 (2014), p.1-10</ispartof><rights>Copyright © 2014 Liguo Sun et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 Liguo Sun et al. Liguo Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Liguo Sun et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-bde6a359f45f32a048b355da223d2cb623f4bd6d8492f7344a85e1db3d0e2ebe3</citedby><cites>FETCH-LOGICAL-c560t-bde6a359f45f32a048b355da223d2cb623f4bd6d8492f7344a85e1db3d0e2ebe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075190/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075190/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25019087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pei, Guo-Xian</contributor><creatorcontrib>Sun, Liguo</creatorcontrib><creatorcontrib>Li, Hongguo</creatorcontrib><creatorcontrib>Qu, Ling</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Fan, Xiangli</creatorcontrib><creatorcontrib>Xue, Yingsen</creatorcontrib><creatorcontrib>Xie, Zhenghong</creatorcontrib><creatorcontrib>Fan, Hongbin</creatorcontrib><title>Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM) showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3) gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs) on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM) components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface.</description><subject>Adsorption</subject><subject>Animals</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biomechanics</subject><subject>Bone and Bones - cytology</subject><subject>Bone and Bones - physiology</subject><subject>Bone surgery</subject><subject>Cables</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cell growth</subject><subject>Cell Proliferation - physiology</subject><subject>Cells, Cultured</subject><subject>Chondroitin sulfate</subject><subject>Chondroitin Sulfates - chemistry</subject><subject>Collagen</subject><subject>Collagens</subject><subject>Culture</subject><subject>Differentiation</subject><subject>Fibroins - chemistry</subject><subject>Genes</subject><subject>Genetic Vectors - genetics</subject><subject>Grafting</subject><subject>Health aspects</subject><subject>Hospitals</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Lentivirus</subject><subject>Lentivirus - genetics</subject><subject>Ligaments</subject><subject>Ligaments - cytology</subject><subject>Ligaments - physiology</subject><subject>Materials Testing</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - physiology</subject><subject>Orthopedic surgery</subject><subject>Rabbits</subject><subject>Scaffolds</subject><subject>Silk</subject><subject>Tensile strength</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Transforming Growth Factor beta3 - genetics</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0k1v0zAYB_AIgdg0duIMssQFgcL8nuSCVKqNDlXi0MHVcuLHrUdiDzsZKl-Cr4yrjvJyYb7Ykn_6P_ajpyieEvyGECHOKCb8rCayqZoHxTFlhJeScPLwcGbsqDhN6RrnlR1u5OPiiApMGlxXx8WPy2EIrevddzBoCX50ty5OCX2GbgwRBY_mm-BNDG50Hq2m3uoRysVW91MMPp_RrHOmXLn-C7pwbXYeLbZtdAatOm1t6A2yOejKpTRBee7XzgPEXTG31kMuWL4LHtCHyXejC_5J8cjqPsHp3X5SfLo4v5ovyuXH95fz2bLshMRj2RqQmonGcmEZ1ZjXLRPCaEqZoV0rKbO8NdLUvKG2YpzrWgAxLTMYKLTAToq3-9ybqR3AdPkhUffqJrpBx60K2qm_b7zbqHW4VRxXIvcuB7y8C4jh6wRpVINLHfS99hCmpIjklDaiquQ9KCGSiVrcgwouSN0wKTJ98Q-9DlP0uWlZCcplw6vqt1rrHpTzNuTfdLtQNeO0wpSLimX1eq-6GFKKYA-NIFjt5kzt5kzt5yzr53_27mB_TVUGr_Zg47zR39x_0p7tMWQCVh-wwJgLxn4CxUjkQA</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Sun, Liguo</creator><creator>Li, Hongguo</creator><creator>Qu, Ling</creator><creator>Zhu, Rui</creator><creator>Fan, Xiangli</creator><creator>Xue, Yingsen</creator><creator>Xie, Zhenghong</creator><creator>Fan, Hongbin</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction</title><author>Sun, Liguo ; Li, Hongguo ; Qu, Ling ; Zhu, Rui ; Fan, Xiangli ; Xue, Yingsen ; Xie, Zhenghong ; Fan, Hongbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-bde6a359f45f32a048b355da223d2cb623f4bd6d8492f7344a85e1db3d0e2ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorption</topic><topic>Animals</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biomechanics</topic><topic>Bone and Bones - cytology</topic><topic>Bone and Bones - physiology</topic><topic>Bone surgery</topic><topic>Cables</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cell growth</topic><topic>Cell Proliferation - physiology</topic><topic>Cells, Cultured</topic><topic>Chondroitin sulfate</topic><topic>Chondroitin Sulfates - chemistry</topic><topic>Collagen</topic><topic>Collagens</topic><topic>Culture</topic><topic>Differentiation</topic><topic>Fibroins - chemistry</topic><topic>Genes</topic><topic>Genetic Vectors - genetics</topic><topic>Grafting</topic><topic>Health aspects</topic><topic>Hospitals</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Lentivirus</topic><topic>Lentivirus - genetics</topic><topic>Ligaments</topic><topic>Ligaments - cytology</topic><topic>Ligaments - physiology</topic><topic>Materials Testing</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - physiology</topic><topic>Orthopedic surgery</topic><topic>Rabbits</topic><topic>Scaffolds</topic><topic>Silk</topic><topic>Tensile strength</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Transforming Growth Factor beta3 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Liguo</creatorcontrib><creatorcontrib>Li, Hongguo</creatorcontrib><creatorcontrib>Qu, Ling</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Fan, Xiangli</creatorcontrib><creatorcontrib>Xue, Yingsen</creatorcontrib><creatorcontrib>Xie, Zhenghong</creatorcontrib><creatorcontrib>Fan, Hongbin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Liguo</au><au>Li, Hongguo</au><au>Qu, Ling</au><au>Zhu, Rui</au><au>Fan, Xiangli</au><au>Xue, Yingsen</au><au>Xie, Zhenghong</au><au>Fan, Hongbin</au><au>Pei, Guo-Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM) showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3) gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs) on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM) components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>25019087</pmid><doi>10.1155/2014/816979</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2014-01, Vol.2014 (2014), p.1-10
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4075190
source MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Adsorption
Animals
Biocompatible Materials - chemical synthesis
Biomechanics
Bone and Bones - cytology
Bone and Bones - physiology
Bone surgery
Cables
Cell Adhesion - physiology
Cell Differentiation - physiology
Cell growth
Cell Proliferation - physiology
Cells, Cultured
Chondroitin sulfate
Chondroitin Sulfates - chemistry
Collagen
Collagens
Culture
Differentiation
Fibroins - chemistry
Genes
Genetic Vectors - genetics
Grafting
Health aspects
Hospitals
Hyaluronic Acid - chemistry
Lentivirus
Lentivirus - genetics
Ligaments
Ligaments - cytology
Ligaments - physiology
Materials Testing
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - physiology
Orthopedic surgery
Rabbits
Scaffolds
Silk
Tensile strength
Tissue engineering
Tissue Engineering - instrumentation
Tissue Engineering - methods
Tissue Scaffolds
Transforming Growth Factor beta3 - genetics
title Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilized%20Lentivirus%20Vector%20on%20Chondroitin%20Sulfate-Hyaluronate%20Acid-Silk%20Fibroin%20Hybrid%20Scaffold%20for%20Tissue-Engineered%20Ligament-Bone%20Junction&rft.jtitle=BioMed%20research%20international&rft.au=Sun,%20Liguo&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2014/816979&rft_dat=%3Cgale_pubme%3EA427024573%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552469477&rft_id=info:pmid/25019087&rft_galeid=A427024573&rfr_iscdi=true