Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction
The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2014-01, Vol.2014 (2014), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2014 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2014 |
creator | Sun, Liguo Li, Hongguo Qu, Ling Zhu, Rui Fan, Xiangli Xue, Yingsen Xie, Zhenghong Fan, Hongbin |
description | The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM) showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3) gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs) on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM) components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface. |
doi_str_mv | 10.1155/2014/816979 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4075190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A427024573</galeid><sourcerecordid>A427024573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-bde6a359f45f32a048b355da223d2cb623f4bd6d8492f7344a85e1db3d0e2ebe3</originalsourceid><addsrcrecordid>eNqN0k1v0zAYB_AIgdg0duIMssQFgcL8nuSCVKqNDlXi0MHVcuLHrUdiDzsZKl-Cr4yrjvJyYb7Ykn_6P_ajpyieEvyGECHOKCb8rCayqZoHxTFlhJeScPLwcGbsqDhN6RrnlR1u5OPiiApMGlxXx8WPy2EIrevddzBoCX50ty5OCX2GbgwRBY_mm-BNDG50Hq2m3uoRysVW91MMPp_RrHOmXLn-C7pwbXYeLbZtdAatOm1t6A2yOejKpTRBee7XzgPEXTG31kMuWL4LHtCHyXejC_5J8cjqPsHp3X5SfLo4v5ovyuXH95fz2bLshMRj2RqQmonGcmEZ1ZjXLRPCaEqZoV0rKbO8NdLUvKG2YpzrWgAxLTMYKLTAToq3-9ybqR3AdPkhUffqJrpBx60K2qm_b7zbqHW4VRxXIvcuB7y8C4jh6wRpVINLHfS99hCmpIjklDaiquQ9KCGSiVrcgwouSN0wKTJ98Q-9DlP0uWlZCcplw6vqt1rrHpTzNuTfdLtQNeO0wpSLimX1eq-6GFKKYA-NIFjt5kzt5kzt5yzr53_27mB_TVUGr_Zg47zR39x_0p7tMWQCVh-wwJgLxn4CxUjkQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552469477</pqid></control><display><type>article</type><title>Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Sun, Liguo ; Li, Hongguo ; Qu, Ling ; Zhu, Rui ; Fan, Xiangli ; Xue, Yingsen ; Xie, Zhenghong ; Fan, Hongbin</creator><contributor>Pei, Guo-Xian</contributor><creatorcontrib>Sun, Liguo ; Li, Hongguo ; Qu, Ling ; Zhu, Rui ; Fan, Xiangli ; Xue, Yingsen ; Xie, Zhenghong ; Fan, Hongbin ; Pei, Guo-Xian</creatorcontrib><description>The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM) showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3) gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs) on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM) components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2014/816979</identifier><identifier>PMID: 25019087</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Adsorption ; Animals ; Biocompatible Materials - chemical synthesis ; Biomechanics ; Bone and Bones - cytology ; Bone and Bones - physiology ; Bone surgery ; Cables ; Cell Adhesion - physiology ; Cell Differentiation - physiology ; Cell growth ; Cell Proliferation - physiology ; Cells, Cultured ; Chondroitin sulfate ; Chondroitin Sulfates - chemistry ; Collagen ; Collagens ; Culture ; Differentiation ; Fibroins - chemistry ; Genes ; Genetic Vectors - genetics ; Grafting ; Health aspects ; Hospitals ; Hyaluronic Acid - chemistry ; Lentivirus ; Lentivirus - genetics ; Ligaments ; Ligaments - cytology ; Ligaments - physiology ; Materials Testing ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - physiology ; Orthopedic surgery ; Rabbits ; Scaffolds ; Silk ; Tensile strength ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds ; Transforming Growth Factor beta3 - genetics</subject><ispartof>BioMed research international, 2014-01, Vol.2014 (2014), p.1-10</ispartof><rights>Copyright © 2014 Liguo Sun et al.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 Liguo Sun et al. Liguo Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 Liguo Sun et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-bde6a359f45f32a048b355da223d2cb623f4bd6d8492f7344a85e1db3d0e2ebe3</citedby><cites>FETCH-LOGICAL-c560t-bde6a359f45f32a048b355da223d2cb623f4bd6d8492f7344a85e1db3d0e2ebe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075190/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075190/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25019087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pei, Guo-Xian</contributor><creatorcontrib>Sun, Liguo</creatorcontrib><creatorcontrib>Li, Hongguo</creatorcontrib><creatorcontrib>Qu, Ling</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Fan, Xiangli</creatorcontrib><creatorcontrib>Xue, Yingsen</creatorcontrib><creatorcontrib>Xie, Zhenghong</creatorcontrib><creatorcontrib>Fan, Hongbin</creatorcontrib><title>Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM) showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3) gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs) on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM) components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface.</description><subject>Adsorption</subject><subject>Animals</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Biomechanics</subject><subject>Bone and Bones - cytology</subject><subject>Bone and Bones - physiology</subject><subject>Bone surgery</subject><subject>Cables</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cell growth</subject><subject>Cell Proliferation - physiology</subject><subject>Cells, Cultured</subject><subject>Chondroitin sulfate</subject><subject>Chondroitin Sulfates - chemistry</subject><subject>Collagen</subject><subject>Collagens</subject><subject>Culture</subject><subject>Differentiation</subject><subject>Fibroins - chemistry</subject><subject>Genes</subject><subject>Genetic Vectors - genetics</subject><subject>Grafting</subject><subject>Health aspects</subject><subject>Hospitals</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Lentivirus</subject><subject>Lentivirus - genetics</subject><subject>Ligaments</subject><subject>Ligaments - cytology</subject><subject>Ligaments - physiology</subject><subject>Materials Testing</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - physiology</subject><subject>Orthopedic surgery</subject><subject>Rabbits</subject><subject>Scaffolds</subject><subject>Silk</subject><subject>Tensile strength</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Transforming Growth Factor beta3 - genetics</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0k1v0zAYB_AIgdg0duIMssQFgcL8nuSCVKqNDlXi0MHVcuLHrUdiDzsZKl-Cr4yrjvJyYb7Ykn_6P_ajpyieEvyGECHOKCb8rCayqZoHxTFlhJeScPLwcGbsqDhN6RrnlR1u5OPiiApMGlxXx8WPy2EIrevddzBoCX50ty5OCX2GbgwRBY_mm-BNDG50Hq2m3uoRysVW91MMPp_RrHOmXLn-C7pwbXYeLbZtdAatOm1t6A2yOejKpTRBee7XzgPEXTG31kMuWL4LHtCHyXejC_5J8cjqPsHp3X5SfLo4v5ovyuXH95fz2bLshMRj2RqQmonGcmEZ1ZjXLRPCaEqZoV0rKbO8NdLUvKG2YpzrWgAxLTMYKLTAToq3-9ybqR3AdPkhUffqJrpBx60K2qm_b7zbqHW4VRxXIvcuB7y8C4jh6wRpVINLHfS99hCmpIjklDaiquQ9KCGSiVrcgwouSN0wKTJ98Q-9DlP0uWlZCcplw6vqt1rrHpTzNuTfdLtQNeO0wpSLimX1eq-6GFKKYA-NIFjt5kzt5kzt5yzr53_27mB_TVUGr_Zg47zR39x_0p7tMWQCVh-wwJgLxn4CxUjkQA</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Sun, Liguo</creator><creator>Li, Hongguo</creator><creator>Qu, Ling</creator><creator>Zhu, Rui</creator><creator>Fan, Xiangli</creator><creator>Xue, Yingsen</creator><creator>Xie, Zhenghong</creator><creator>Fan, Hongbin</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction</title><author>Sun, Liguo ; Li, Hongguo ; Qu, Ling ; Zhu, Rui ; Fan, Xiangli ; Xue, Yingsen ; Xie, Zhenghong ; Fan, Hongbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-bde6a359f45f32a048b355da223d2cb623f4bd6d8492f7344a85e1db3d0e2ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorption</topic><topic>Animals</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Biomechanics</topic><topic>Bone and Bones - cytology</topic><topic>Bone and Bones - physiology</topic><topic>Bone surgery</topic><topic>Cables</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cell growth</topic><topic>Cell Proliferation - physiology</topic><topic>Cells, Cultured</topic><topic>Chondroitin sulfate</topic><topic>Chondroitin Sulfates - chemistry</topic><topic>Collagen</topic><topic>Collagens</topic><topic>Culture</topic><topic>Differentiation</topic><topic>Fibroins - chemistry</topic><topic>Genes</topic><topic>Genetic Vectors - genetics</topic><topic>Grafting</topic><topic>Health aspects</topic><topic>Hospitals</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Lentivirus</topic><topic>Lentivirus - genetics</topic><topic>Ligaments</topic><topic>Ligaments - cytology</topic><topic>Ligaments - physiology</topic><topic>Materials Testing</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - physiology</topic><topic>Orthopedic surgery</topic><topic>Rabbits</topic><topic>Scaffolds</topic><topic>Silk</topic><topic>Tensile strength</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Transforming Growth Factor beta3 - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Liguo</creatorcontrib><creatorcontrib>Li, Hongguo</creatorcontrib><creatorcontrib>Qu, Ling</creatorcontrib><creatorcontrib>Zhu, Rui</creatorcontrib><creatorcontrib>Fan, Xiangli</creatorcontrib><creatorcontrib>Xue, Yingsen</creatorcontrib><creatorcontrib>Xie, Zhenghong</creatorcontrib><creatorcontrib>Fan, Hongbin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Liguo</au><au>Li, Hongguo</au><au>Qu, Ling</au><au>Zhu, Rui</au><au>Fan, Xiangli</au><au>Xue, Yingsen</au><au>Xie, Zhenghong</au><au>Fan, Hongbin</au><au>Pei, Guo-Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL) reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS) hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM) showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3) gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs) on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM) components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>25019087</pmid><doi>10.1155/2014/816979</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2014-01, Vol.2014 (2014), p.1-10 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4075190 |
source | MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Adsorption Animals Biocompatible Materials - chemical synthesis Biomechanics Bone and Bones - cytology Bone and Bones - physiology Bone surgery Cables Cell Adhesion - physiology Cell Differentiation - physiology Cell growth Cell Proliferation - physiology Cells, Cultured Chondroitin sulfate Chondroitin Sulfates - chemistry Collagen Collagens Culture Differentiation Fibroins - chemistry Genes Genetic Vectors - genetics Grafting Health aspects Hospitals Hyaluronic Acid - chemistry Lentivirus Lentivirus - genetics Ligaments Ligaments - cytology Ligaments - physiology Materials Testing Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - physiology Orthopedic surgery Rabbits Scaffolds Silk Tensile strength Tissue engineering Tissue Engineering - instrumentation Tissue Engineering - methods Tissue Scaffolds Transforming Growth Factor beta3 - genetics |
title | Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Immobilized%20Lentivirus%20Vector%20on%20Chondroitin%20Sulfate-Hyaluronate%20Acid-Silk%20Fibroin%20Hybrid%20Scaffold%20for%20Tissue-Engineered%20Ligament-Bone%20Junction&rft.jtitle=BioMed%20research%20international&rft.au=Sun,%20Liguo&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2014/816979&rft_dat=%3Cgale_pubme%3EA427024573%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552469477&rft_id=info:pmid/25019087&rft_galeid=A427024573&rfr_iscdi=true |