The Role of the Selective Adaptor p62 and Ubiquitin-Like Proteins in Autophagy
The ubiquitin-proteasome system and autophagy were long viewed as independent, parallel degradation systems with no point of intersection. By now we know that these degradation pathways share certain substrates and regulatory molecules and show coordinated and compensatory function. Two ubiquitin-li...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2014-01, Vol.2014 (2014), p.1-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2014 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2014 |
creator | Lippai, Mónika Lőw, Péter |
description | The ubiquitin-proteasome system and autophagy were long viewed as independent, parallel degradation systems with no point of intersection. By now we know that these degradation pathways share certain substrates and regulatory molecules and show coordinated and compensatory function. Two ubiquitin-like protein conjugation pathways were discovered that are required for autophagosome biogenesis: the Atg12-Atg5-Atg16 and Atg8 systems. Autophagy has been considered to be essentially a nonselective process, but it turned out to be at least partially selective. Selective substrates of autophagy include damaged mitochondria, intracellular pathogens, and even a subset of cytosolic proteins with the help of ubiquitin-binding autophagic adaptors, such as p62/SQSTM1, NBR1, NDP52, and Optineurin. These proteins selectively recognize autophagic cargo and mediate its engulfment into autophagosomes by binding to the small ubiquitin-like modifiers that belong to the Atg8/LC3 family. |
doi_str_mv | 10.1155/2014/832704 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4075091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A427024638</galeid><sourcerecordid>A427024638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-fe0c41fd14a76f5238a6f5501270db264a31abda83827bc1cabda28805c076a53</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agii21J89KwItYxubl12QuwlLUCksVbc8hk8nsps4m05lMpf-9Gaau1UtzSUI-fHl5D6GXQN4DCHFKCfBTxWhJ-BN0SBnwQgKHp_szYwfoeByvSV4KJKnkc3RABQGmiDxEF5dbh7_HzuHY4pTPP1znbPK3Dq8a06c44F5SbEKDr2p_M_nkQ7H2Px3-NsTkfBixD3g1pdhvzebuBXrWmm50x_f7Ebr69PHy7LxYf_385Wy1LqyoWCpaRyyHtgFuStkKypTJWy4q_6OpqeSGgakbo5iiZW3BzheqFBGWlNIIdoQ-LLn9VO9cY11Ig-l0P_idGe50NF7_-xL8Vm_ireakFKSCHPD2PmCIN5Mbk9750bquM8HFadQgASRjSojHqRC84pSUVaZv_qPXcRpC7sSsKJcVL-Gv2pjOaR_amEu0c6he8dyB7JjK6mRRdojjOLh2_zsgep69nmevl9ln_fphQ_b2z6QzeLeArQ-N-eUfSXu1YJeJa80e57SyFOw3zsC8QQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552469471</pqid></control><display><type>article</type><title>The Role of the Selective Adaptor p62 and Ubiquitin-Like Proteins in Autophagy</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Lippai, Mónika ; Lőw, Péter</creator><contributor>Nezis, Ioannis P.</contributor><creatorcontrib>Lippai, Mónika ; Lőw, Péter ; Nezis, Ioannis P.</creatorcontrib><description>The ubiquitin-proteasome system and autophagy were long viewed as independent, parallel degradation systems with no point of intersection. By now we know that these degradation pathways share certain substrates and regulatory molecules and show coordinated and compensatory function. Two ubiquitin-like protein conjugation pathways were discovered that are required for autophagosome biogenesis: the Atg12-Atg5-Atg16 and Atg8 systems. Autophagy has been considered to be essentially a nonselective process, but it turned out to be at least partially selective. Selective substrates of autophagy include damaged mitochondria, intracellular pathogens, and even a subset of cytosolic proteins with the help of ubiquitin-binding autophagic adaptors, such as p62/SQSTM1, NBR1, NDP52, and Optineurin. These proteins selectively recognize autophagic cargo and mediate its engulfment into autophagosomes by binding to the small ubiquitin-like modifiers that belong to the Atg8/LC3 family.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2014/832704</identifier><identifier>PMID: 25013806</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Apoptosis ; Autophagy ; Autophagy (Cytology) ; Autophagy - genetics ; Cell cycle ; Cellular signal transduction ; Enzymes ; Humans ; Nuclear Proteins - metabolism ; Observations ; Oxidative stress ; Physiological aspects ; Protein Binding ; Proteins ; Proteins - metabolism ; Regulation ; Review ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Signal transduction ; Stress response ; Transcription Factor TFIIIA - metabolism ; Ubiquitin - metabolism ; Ubiquitin-proteasome system ; Ubiquitins - genetics ; Ubiquitins - metabolism</subject><ispartof>BioMed research international, 2014-01, Vol.2014 (2014), p.1-11</ispartof><rights>Copyright © 2014 Mónika Lippai and Péter Lőw.</rights><rights>COPYRIGHT 2014 John Wiley & Sons, Inc.</rights><rights>Copyright © 2014 Mónika Lippai and Péter Low. Mónika Lippai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 M. Lippai and P. Lőw. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-fe0c41fd14a76f5238a6f5501270db264a31abda83827bc1cabda28805c076a53</citedby><cites>FETCH-LOGICAL-c593t-fe0c41fd14a76f5238a6f5501270db264a31abda83827bc1cabda28805c076a53</cites><orcidid>0000-0003-2450-7087 ; 0000-0002-7307-4233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075091/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075091/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25013806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nezis, Ioannis P.</contributor><creatorcontrib>Lippai, Mónika</creatorcontrib><creatorcontrib>Lőw, Péter</creatorcontrib><title>The Role of the Selective Adaptor p62 and Ubiquitin-Like Proteins in Autophagy</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>The ubiquitin-proteasome system and autophagy were long viewed as independent, parallel degradation systems with no point of intersection. By now we know that these degradation pathways share certain substrates and regulatory molecules and show coordinated and compensatory function. Two ubiquitin-like protein conjugation pathways were discovered that are required for autophagosome biogenesis: the Atg12-Atg5-Atg16 and Atg8 systems. Autophagy has been considered to be essentially a nonselective process, but it turned out to be at least partially selective. Selective substrates of autophagy include damaged mitochondria, intracellular pathogens, and even a subset of cytosolic proteins with the help of ubiquitin-binding autophagic adaptors, such as p62/SQSTM1, NBR1, NDP52, and Optineurin. These proteins selectively recognize autophagic cargo and mediate its engulfment into autophagosomes by binding to the small ubiquitin-like modifiers that belong to the Atg8/LC3 family.</description><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Autophagy (Cytology)</subject><subject>Autophagy - genetics</subject><subject>Cell cycle</subject><subject>Cellular signal transduction</subject><subject>Enzymes</subject><subject>Humans</subject><subject>Nuclear Proteins - metabolism</subject><subject>Observations</subject><subject>Oxidative stress</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Regulation</subject><subject>Review</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Signal transduction</subject><subject>Stress response</subject><subject>Transcription Factor TFIIIA - metabolism</subject><subject>Ubiquitin - metabolism</subject><subject>Ubiquitin-proteasome system</subject><subject>Ubiquitins - genetics</subject><subject>Ubiquitins - metabolism</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0c9rFDEUB_Agii21J89KwItYxubl12QuwlLUCksVbc8hk8nsps4m05lMpf-9Gaau1UtzSUI-fHl5D6GXQN4DCHFKCfBTxWhJ-BN0SBnwQgKHp_szYwfoeByvSV4KJKnkc3RABQGmiDxEF5dbh7_HzuHY4pTPP1znbPK3Dq8a06c44F5SbEKDr2p_M_nkQ7H2Px3-NsTkfBixD3g1pdhvzebuBXrWmm50x_f7Ebr69PHy7LxYf_385Wy1LqyoWCpaRyyHtgFuStkKypTJWy4q_6OpqeSGgakbo5iiZW3BzheqFBGWlNIIdoQ-LLn9VO9cY11Ig-l0P_idGe50NF7_-xL8Vm_ireakFKSCHPD2PmCIN5Mbk9750bquM8HFadQgASRjSojHqRC84pSUVaZv_qPXcRpC7sSsKJcVL-Gv2pjOaR_amEu0c6he8dyB7JjK6mRRdojjOLh2_zsgep69nmevl9ln_fphQ_b2z6QzeLeArQ-N-eUfSXu1YJeJa80e57SyFOw3zsC8QQ</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Lippai, Mónika</creator><creator>Lőw, Péter</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2450-7087</orcidid><orcidid>https://orcid.org/0000-0002-7307-4233</orcidid></search><sort><creationdate>20140101</creationdate><title>The Role of the Selective Adaptor p62 and Ubiquitin-Like Proteins in Autophagy</title><author>Lippai, Mónika ; Lőw, Péter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-fe0c41fd14a76f5238a6f5501270db264a31abda83827bc1cabda28805c076a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Autophagy (Cytology)</topic><topic>Autophagy - genetics</topic><topic>Cell cycle</topic><topic>Cellular signal transduction</topic><topic>Enzymes</topic><topic>Humans</topic><topic>Nuclear Proteins - metabolism</topic><topic>Observations</topic><topic>Oxidative stress</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Regulation</topic><topic>Review</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Signal transduction</topic><topic>Stress response</topic><topic>Transcription Factor TFIIIA - metabolism</topic><topic>Ubiquitin - metabolism</topic><topic>Ubiquitin-proteasome system</topic><topic>Ubiquitins - genetics</topic><topic>Ubiquitins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lippai, Mónika</creatorcontrib><creatorcontrib>Lőw, Péter</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lippai, Mónika</au><au>Lőw, Péter</au><au>Nezis, Ioannis P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of the Selective Adaptor p62 and Ubiquitin-Like Proteins in Autophagy</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>The ubiquitin-proteasome system and autophagy were long viewed as independent, parallel degradation systems with no point of intersection. By now we know that these degradation pathways share certain substrates and regulatory molecules and show coordinated and compensatory function. Two ubiquitin-like protein conjugation pathways were discovered that are required for autophagosome biogenesis: the Atg12-Atg5-Atg16 and Atg8 systems. Autophagy has been considered to be essentially a nonselective process, but it turned out to be at least partially selective. Selective substrates of autophagy include damaged mitochondria, intracellular pathogens, and even a subset of cytosolic proteins with the help of ubiquitin-binding autophagic adaptors, such as p62/SQSTM1, NBR1, NDP52, and Optineurin. These proteins selectively recognize autophagic cargo and mediate its engulfment into autophagosomes by binding to the small ubiquitin-like modifiers that belong to the Atg8/LC3 family.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>25013806</pmid><doi>10.1155/2014/832704</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2450-7087</orcidid><orcidid>https://orcid.org/0000-0002-7307-4233</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2014-01, Vol.2014 (2014), p.1-11 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4075091 |
source | MEDLINE; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Apoptosis Autophagy Autophagy (Cytology) Autophagy - genetics Cell cycle Cellular signal transduction Enzymes Humans Nuclear Proteins - metabolism Observations Oxidative stress Physiological aspects Protein Binding Proteins Proteins - metabolism Regulation Review RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Signal transduction Stress response Transcription Factor TFIIIA - metabolism Ubiquitin - metabolism Ubiquitin-proteasome system Ubiquitins - genetics Ubiquitins - metabolism |
title | The Role of the Selective Adaptor p62 and Ubiquitin-Like Proteins in Autophagy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20the%20Selective%20Adaptor%20p62%20and%20Ubiquitin-Like%20Proteins%20in%20Autophagy&rft.jtitle=BioMed%20research%20international&rft.au=Lippai,%20M%C3%B3nika&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2014/832704&rft_dat=%3Cgale_pubme%3EA427024638%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552469471&rft_id=info:pmid/25013806&rft_galeid=A427024638&rfr_iscdi=true |