A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation

The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biologica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2014-01, Vol.2014 (2014), p.1-12
Hauptverfasser: Colmenares, José, Galizia, Antonella, Ortiz, Jesús, Clematis, Andrea, Rocchia, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2014
container_start_page 1
container_title BioMed research international
container_volume 2014
creator Colmenares, José
Galizia, Antonella
Ortiz, Jesús
Clematis, Andrea
Rocchia, Walter
description The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.
doi_str_mv 10.1155/2014/560987
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4074970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A427023547</galeid><sourcerecordid>A427023547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-5e047793e9972b1a0250053ae504c74f339e353e2b1e4f73f95f3c04dd4827ca3</originalsourceid><addsrcrecordid>eNqNkk1rFTEYhYMotrRduVYCbkQZm483k5lN4XqttXDVC1pwF3JnkjYlk7STGaX99Wacev3Y1GyS8D45nBwOQk8oeU2pEIeMUDgUJakr-QDtMk6hKCnQh9sz5zvoIKVLkldFM1g-RjtMEMplVe-irwu8jN3GBdPiD-vTYnn2doHXutfeG48_Rz8OLgYcLV5lRvdYhxZ_jMHPt3V0KcVQvIl-uO10CPj4etTTk330yGqfzMHdvofO3h1_Wb4vVp9OTpeLVdFk10MhDAEpa27qWrIN1SRbI4JrIwg0EiznteGCmzwzYCW3tbC8IdC2UDHZaL6Hjmbdq3HTmbYxYcjm1VXvOt3fqKid-nsS3IU6j98UEAm1JFngxZ1AH69HkwbVudQY73UwcUyKljLHJhiV_4FSWnIgpL4fFQASqIRJ9fk_6GUc-5BDy5RgUMqyhN_UufZGuWBj_k0ziaoFMEkYFz-1Xs1U08eUemO3QVCipsKoqTBqLkymn_2Z3Zb9VY8MvJyBCxda_d3do_Z0hk1GjNVbGCpSccJ_ABYyzOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552467664</pqid></control><display><type>article</type><title>A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Colmenares, José ; Galizia, Antonella ; Ortiz, Jesús ; Clematis, Andrea ; Rocchia, Walter</creator><contributor>Pérez-Sánchez, Horacio</contributor><creatorcontrib>Colmenares, José ; Galizia, Antonella ; Ortiz, Jesús ; Clematis, Andrea ; Rocchia, Walter ; Pérez-Sánchez, Horacio</creatorcontrib><description>The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2014/560987</identifier><identifier>PMID: 25013789</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Applications software ; Biological ; Biomedical research ; Biomolecules ; Computation ; Computational Biology ; Computer programs ; Computer Simulation ; Electrolytes ; Electrostatics ; Field programmable gate arrays ; Mathematical analysis ; Mathematical models ; Models, Molecular ; Obstacles ; Protein Conformation ; Proteins - chemistry ; Software ; Solvents ; Static Electricity ; Studies</subject><ispartof>BioMed research international, 2014-01, Vol.2014 (2014), p.1-12</ispartof><rights>Copyright © 2014 José Colmenares et al.</rights><rights>COPYRIGHT 2014 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2014 José Colmenares et al. José Colmenares et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2014 José Colmenares et al. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-5e047793e9972b1a0250053ae504c74f339e353e2b1e4f73f95f3c04dd4827ca3</citedby><cites>FETCH-LOGICAL-c560t-5e047793e9972b1a0250053ae504c74f339e353e2b1e4f73f95f3c04dd4827ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074970/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074970/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25013789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pérez-Sánchez, Horacio</contributor><creatorcontrib>Colmenares, José</creatorcontrib><creatorcontrib>Galizia, Antonella</creatorcontrib><creatorcontrib>Ortiz, Jesús</creatorcontrib><creatorcontrib>Clematis, Andrea</creatorcontrib><creatorcontrib>Rocchia, Walter</creatorcontrib><title>A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.</description><subject>Algorithms</subject><subject>Applications software</subject><subject>Biological</subject><subject>Biomedical research</subject><subject>Biomolecules</subject><subject>Computation</subject><subject>Computational Biology</subject><subject>Computer programs</subject><subject>Computer Simulation</subject><subject>Electrolytes</subject><subject>Electrostatics</subject><subject>Field programmable gate arrays</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Models, Molecular</subject><subject>Obstacles</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Software</subject><subject>Solvents</subject><subject>Static Electricity</subject><subject>Studies</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkk1rFTEYhYMotrRduVYCbkQZm483k5lN4XqttXDVC1pwF3JnkjYlk7STGaX99Wacev3Y1GyS8D45nBwOQk8oeU2pEIeMUDgUJakr-QDtMk6hKCnQh9sz5zvoIKVLkldFM1g-RjtMEMplVe-irwu8jN3GBdPiD-vTYnn2doHXutfeG48_Rz8OLgYcLV5lRvdYhxZ_jMHPt3V0KcVQvIl-uO10CPj4etTTk330yGqfzMHdvofO3h1_Wb4vVp9OTpeLVdFk10MhDAEpa27qWrIN1SRbI4JrIwg0EiznteGCmzwzYCW3tbC8IdC2UDHZaL6Hjmbdq3HTmbYxYcjm1VXvOt3fqKid-nsS3IU6j98UEAm1JFngxZ1AH69HkwbVudQY73UwcUyKljLHJhiV_4FSWnIgpL4fFQASqIRJ9fk_6GUc-5BDy5RgUMqyhN_UufZGuWBj_k0ziaoFMEkYFz-1Xs1U08eUemO3QVCipsKoqTBqLkymn_2Z3Zb9VY8MvJyBCxda_d3do_Z0hk1GjNVbGCpSccJ_ABYyzOg</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Colmenares, José</creator><creator>Galizia, Antonella</creator><creator>Ortiz, Jesús</creator><creator>Clematis, Andrea</creator><creator>Rocchia, Walter</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20140101</creationdate><title>A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation</title><author>Colmenares, José ; Galizia, Antonella ; Ortiz, Jesús ; Clematis, Andrea ; Rocchia, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-5e047793e9972b1a0250053ae504c74f339e353e2b1e4f73f95f3c04dd4827ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applications software</topic><topic>Biological</topic><topic>Biomedical research</topic><topic>Biomolecules</topic><topic>Computation</topic><topic>Computational Biology</topic><topic>Computer programs</topic><topic>Computer Simulation</topic><topic>Electrolytes</topic><topic>Electrostatics</topic><topic>Field programmable gate arrays</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Models, Molecular</topic><topic>Obstacles</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Software</topic><topic>Solvents</topic><topic>Static Electricity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colmenares, José</creatorcontrib><creatorcontrib>Galizia, Antonella</creatorcontrib><creatorcontrib>Ortiz, Jesús</creatorcontrib><creatorcontrib>Clematis, Andrea</creatorcontrib><creatorcontrib>Rocchia, Walter</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colmenares, José</au><au>Galizia, Antonella</au><au>Ortiz, Jesús</au><au>Clematis, Andrea</au><au>Rocchia, Walter</au><au>Pérez-Sánchez, Horacio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>The Poisson-Boltzmann equation models the electrostatic potential generated by fixed charges on a polarizable solute immersed in an ionic solution. This approach is often used in computational structural biology to estimate the electrostatic energetic component of the assembly of molecular biological systems. In the last decades, the amount of data concerning proteins and other biological macromolecules has remarkably increased. To fruitfully exploit these data, a huge computational power is needed as well as software tools capable of exploiting it. It is therefore necessary to move towards high performance computing and to develop proper parallel implementations of already existing and of novel algorithms. Nowadays, workstations can provide an amazing computational power: up to 10 TFLOPS on a single machine equipped with multiple CPUs and accelerators such as Intel Xeon Phi or GPU devices. The actual obstacle to the full exploitation of modern heterogeneous resources is efficient parallel coding and porting of software on such architectures. In this paper, we propose the implementation of a full Poisson-Boltzmann solver based on a finite-difference scheme using different and combined parallel schemes and in particular a mixed MPI-CUDA implementation. Results show great speedups when using the two schemes, achieving an 18.9x speedup using three GPUs.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>25013789</pmid><doi>10.1155/2014/560987</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2314-6133
ispartof BioMed research international, 2014-01, Vol.2014 (2014), p.1-12
issn 2314-6133
2314-6141
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4074970
source MEDLINE; PubMed Central Open Access; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Applications software
Biological
Biomedical research
Biomolecules
Computation
Computational Biology
Computer programs
Computer Simulation
Electrolytes
Electrostatics
Field programmable gate arrays
Mathematical analysis
Mathematical models
Models, Molecular
Obstacles
Protein Conformation
Proteins - chemistry
Software
Solvents
Static Electricity
Studies
title A Combined MPI-CUDA Parallel Solution of Linear and Nonlinear Poisson-Boltzmann Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Combined%20MPI-CUDA%20Parallel%20Solution%20of%20Linear%20and%20Nonlinear%20Poisson-Boltzmann%20Equation&rft.jtitle=BioMed%20research%20international&rft.au=Colmenares,%20Jos%C3%A9&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2014/560987&rft_dat=%3Cgale_pubme%3EA427023547%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552467664&rft_id=info:pmid/25013789&rft_galeid=A427023547&rfr_iscdi=true