Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers
Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val–Pro–Gly–Xaa–Gly, where the guest residue (Xaa) can be any natural...
Gespeichert in:
Veröffentlicht in: | World journal of microbiology & biotechnology 2014-08, Vol.30 (8), p.2141-2152 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2152 |
---|---|
container_issue | 8 |
container_start_page | 2141 |
container_title | World journal of microbiology & biotechnology |
container_volume | 30 |
creator | Kowalczyk, Tomasz Hnatuszko-Konka, Katarzyna Gerszberg, Aneta Kononowicz, Andrzej K |
description | Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val–Pro–Gly–Xaa–Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that can be triggered by various environmental stimuli, such as temperature, pH or ionic strength. This behavior depends greatly on the molecular weight, concentration of ELP in the solution and composition of the amino acids constituting ELPs. At a temperature below the inverse transition temperature (Tₜ), ELPs are soluble, but insoluble when the temperature exceeds Tₜ. Furthermore, this feature is retained even when ELP is fused to the protein of interest. These unique properties make ELP very useful for a wide variety of biomedical applications (e.g. protein purification, drug delivery etc.) and it can be expected that smart biopolymers will play a significant role in the development of most new materials and technologies. Here we present the structure and properties of thermally responsive elastin-like polypeptides with a particular emphasis on biomedical and biotechnological application. |
doi_str_mv | 10.1007/s11274-014-1649-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4072924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3350490451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c700t-a91fe2fd286f984e1cb66ecef69420a74769412213498631de090184e4736a343</originalsourceid><addsrcrecordid>eNqNkstu1TAQhiMEoofCA7CBSGzYBGZ8jTdIqCoXqRIL6Nr4JJPgkjjBzkE6b4-jlKqwgFqWbGu--T0e_0XxFOEVAujXCZFpUQGKCpUwlbxX7FBqXoHR7H6xAyNNxY3hJ8WjlK4AcpbhD4sTJpQxNZhd8fV8cGnxoRr8dyrnaTjONC--pVS6PMs5TqNPPvRl50Y_HMupK3sKtPjGDcOxotD7QBSpXdGFfCj3Lq2nLDVSTI-LB50bEj25Xk-Ly3fnX84-VBef3n88e3tRNRpgqZzBjljXslp1phaEzV4paqhTRjBwWui8QcaQC1Mrji2BAcyg0Fw5Lvhp8WbTnQ_7kdqGwhLdYOfoRxePdnLe_hkJ_pvtp59WgGaGrQIvrwXi9ONAabH54Q0Ngws0HZJFpVEhN1zfAVVc5i9g8v-olBKQS6jvgArkNVd6LeDFX-jVdIgh93elILcE1CqIG9XEKaVI3U03EOxqILsZyGYD2dVAdq332e023mT8dkwG2AakHAo9xVtX_0P1-ZbUucm6PvpkLz8zQAl5CCWB_wKxJdj1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1540736068</pqid></control><display><type>article</type><title>Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kowalczyk, Tomasz ; Hnatuszko-Konka, Katarzyna ; Gerszberg, Aneta ; Kononowicz, Andrzej K</creator><creatorcontrib>Kowalczyk, Tomasz ; Hnatuszko-Konka, Katarzyna ; Gerszberg, Aneta ; Kononowicz, Andrzej K</creatorcontrib><description>Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val–Pro–Gly–Xaa–Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that can be triggered by various environmental stimuli, such as temperature, pH or ionic strength. This behavior depends greatly on the molecular weight, concentration of ELP in the solution and composition of the amino acids constituting ELPs. At a temperature below the inverse transition temperature (Tₜ), ELPs are soluble, but insoluble when the temperature exceeds Tₜ. Furthermore, this feature is retained even when ELP is fused to the protein of interest. These unique properties make ELP very useful for a wide variety of biomedical applications (e.g. protein purification, drug delivery etc.) and it can be expected that smart biopolymers will play a significant role in the development of most new materials and technologies. Here we present the structure and properties of thermally responsive elastin-like polypeptides with a particular emphasis on biomedical and biotechnological application.</description><identifier>ISSN: 0959-3993</identifier><identifier>EISSN: 1573-0972</identifier><identifier>DOI: 10.1007/s11274-014-1649-5</identifier><identifier>PMID: 24699809</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>amino acid composition ; Amino acids ; analysis ; Applied Microbiology ; Biochemistry ; Biomedical and Life Sciences ; Biomedical materials ; Biomedical Research ; Biopolymers ; Biopolymers - chemistry ; Biopolymers - metabolism ; Biotechnology ; chemistry ; Concentration (composition) ; Drug delivery systems ; Elastin ; Elastin - analysis ; Environmental Engineering/Biotechnology ; Enzymes ; Genes ; Genetic engineering ; ionic strength ; Life Sciences ; metabolism ; methods ; Microbiology ; Molecular biology ; molecular weight ; Peptides ; phase transition ; Phase transitions ; Polymers ; Polypeptides ; proline ; Protein Engineering ; Protein Engineering - methods ; Protein expression ; Proteins ; Review ; Studies ; Temperature ; Transition temperatures</subject><ispartof>World journal of microbiology & biotechnology, 2014-08, Vol.30 (8), p.2141-2152</ispartof><rights>The Author(s) 2014</rights><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c700t-a91fe2fd286f984e1cb66ecef69420a74769412213498631de090184e4736a343</citedby><cites>FETCH-LOGICAL-c700t-a91fe2fd286f984e1cb66ecef69420a74769412213498631de090184e4736a343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11274-014-1649-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11274-014-1649-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24699809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowalczyk, Tomasz</creatorcontrib><creatorcontrib>Hnatuszko-Konka, Katarzyna</creatorcontrib><creatorcontrib>Gerszberg, Aneta</creatorcontrib><creatorcontrib>Kononowicz, Andrzej K</creatorcontrib><title>Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers</title><title>World journal of microbiology & biotechnology</title><addtitle>World J Microbiol Biotechnol</addtitle><addtitle>World J Microbiol Biotechnol</addtitle><description>Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val–Pro–Gly–Xaa–Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that can be triggered by various environmental stimuli, such as temperature, pH or ionic strength. This behavior depends greatly on the molecular weight, concentration of ELP in the solution and composition of the amino acids constituting ELPs. At a temperature below the inverse transition temperature (Tₜ), ELPs are soluble, but insoluble when the temperature exceeds Tₜ. Furthermore, this feature is retained even when ELP is fused to the protein of interest. These unique properties make ELP very useful for a wide variety of biomedical applications (e.g. protein purification, drug delivery etc.) and it can be expected that smart biopolymers will play a significant role in the development of most new materials and technologies. Here we present the structure and properties of thermally responsive elastin-like polypeptides with a particular emphasis on biomedical and biotechnological application.</description><subject>amino acid composition</subject><subject>Amino acids</subject><subject>analysis</subject><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical materials</subject><subject>Biomedical Research</subject><subject>Biopolymers</subject><subject>Biopolymers - chemistry</subject><subject>Biopolymers - metabolism</subject><subject>Biotechnology</subject><subject>chemistry</subject><subject>Concentration (composition)</subject><subject>Drug delivery systems</subject><subject>Elastin</subject><subject>Elastin - analysis</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Enzymes</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>ionic strength</subject><subject>Life Sciences</subject><subject>metabolism</subject><subject>methods</subject><subject>Microbiology</subject><subject>Molecular biology</subject><subject>molecular weight</subject><subject>Peptides</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Polymers</subject><subject>Polypeptides</subject><subject>proline</subject><subject>Protein Engineering</subject><subject>Protein Engineering - methods</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Review</subject><subject>Studies</subject><subject>Temperature</subject><subject>Transition temperatures</subject><issn>0959-3993</issn><issn>1573-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkstu1TAQhiMEoofCA7CBSGzYBGZ8jTdIqCoXqRIL6Nr4JJPgkjjBzkE6b4-jlKqwgFqWbGu--T0e_0XxFOEVAujXCZFpUQGKCpUwlbxX7FBqXoHR7H6xAyNNxY3hJ8WjlK4AcpbhD4sTJpQxNZhd8fV8cGnxoRr8dyrnaTjONC--pVS6PMs5TqNPPvRl50Y_HMupK3sKtPjGDcOxotD7QBSpXdGFfCj3Lq2nLDVSTI-LB50bEj25Xk-Ly3fnX84-VBef3n88e3tRNRpgqZzBjljXslp1phaEzV4paqhTRjBwWui8QcaQC1Mrji2BAcyg0Fw5Lvhp8WbTnQ_7kdqGwhLdYOfoRxePdnLe_hkJ_pvtp59WgGaGrQIvrwXi9ONAabH54Q0Ngws0HZJFpVEhN1zfAVVc5i9g8v-olBKQS6jvgArkNVd6LeDFX-jVdIgh93elILcE1CqIG9XEKaVI3U03EOxqILsZyGYD2dVAdq332e023mT8dkwG2AakHAo9xVtX_0P1-ZbUucm6PvpkLz8zQAl5CCWB_wKxJdj1</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Kowalczyk, Tomasz</creator><creator>Hnatuszko-Konka, Katarzyna</creator><creator>Gerszberg, Aneta</creator><creator>Kononowicz, Andrzej K</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7SR</scope><scope>JG9</scope><scope>5PM</scope></search><sort><creationdate>20140801</creationdate><title>Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers</title><author>Kowalczyk, Tomasz ; Hnatuszko-Konka, Katarzyna ; Gerszberg, Aneta ; Kononowicz, Andrzej K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c700t-a91fe2fd286f984e1cb66ecef69420a74769412213498631de090184e4736a343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>amino acid composition</topic><topic>Amino acids</topic><topic>analysis</topic><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical materials</topic><topic>Biomedical Research</topic><topic>Biopolymers</topic><topic>Biopolymers - chemistry</topic><topic>Biopolymers - metabolism</topic><topic>Biotechnology</topic><topic>chemistry</topic><topic>Concentration (composition)</topic><topic>Drug delivery systems</topic><topic>Elastin</topic><topic>Elastin - analysis</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Enzymes</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>ionic strength</topic><topic>Life Sciences</topic><topic>metabolism</topic><topic>methods</topic><topic>Microbiology</topic><topic>Molecular biology</topic><topic>molecular weight</topic><topic>Peptides</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Polymers</topic><topic>Polypeptides</topic><topic>proline</topic><topic>Protein Engineering</topic><topic>Protein Engineering - methods</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Review</topic><topic>Studies</topic><topic>Temperature</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalczyk, Tomasz</creatorcontrib><creatorcontrib>Hnatuszko-Konka, Katarzyna</creatorcontrib><creatorcontrib>Gerszberg, Aneta</creatorcontrib><creatorcontrib>Kononowicz, Andrzej K</creatorcontrib><collection>AGRIS</collection><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>World journal of microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalczyk, Tomasz</au><au>Hnatuszko-Konka, Katarzyna</au><au>Gerszberg, Aneta</au><au>Kononowicz, Andrzej K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers</atitle><jtitle>World journal of microbiology & biotechnology</jtitle><stitle>World J Microbiol Biotechnol</stitle><addtitle>World J Microbiol Biotechnol</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>30</volume><issue>8</issue><spage>2141</spage><epage>2152</epage><pages>2141-2152</pages><issn>0959-3993</issn><eissn>1573-0972</eissn><abstract>Elastin-like polypeptides (ELP) are artificial, genetically encodable biopolymers, belonging to elastomeric proteins, which are widespread in a wide range of living organisms. They are composed of a repeating pentapeptide sequence Val–Pro–Gly–Xaa–Gly, where the guest residue (Xaa) can be any naturally occurring amino acid except proline. These polymers undergo reversible phase transition that can be triggered by various environmental stimuli, such as temperature, pH or ionic strength. This behavior depends greatly on the molecular weight, concentration of ELP in the solution and composition of the amino acids constituting ELPs. At a temperature below the inverse transition temperature (Tₜ), ELPs are soluble, but insoluble when the temperature exceeds Tₜ. Furthermore, this feature is retained even when ELP is fused to the protein of interest. These unique properties make ELP very useful for a wide variety of biomedical applications (e.g. protein purification, drug delivery etc.) and it can be expected that smart biopolymers will play a significant role in the development of most new materials and technologies. Here we present the structure and properties of thermally responsive elastin-like polypeptides with a particular emphasis on biomedical and biotechnological application.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><pmid>24699809</pmid><doi>10.1007/s11274-014-1649-5</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-3993 |
ispartof | World journal of microbiology & biotechnology, 2014-08, Vol.30 (8), p.2141-2152 |
issn | 0959-3993 1573-0972 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4072924 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | amino acid composition Amino acids analysis Applied Microbiology Biochemistry Biomedical and Life Sciences Biomedical materials Biomedical Research Biopolymers Biopolymers - chemistry Biopolymers - metabolism Biotechnology chemistry Concentration (composition) Drug delivery systems Elastin Elastin - analysis Environmental Engineering/Biotechnology Enzymes Genes Genetic engineering ionic strength Life Sciences metabolism methods Microbiology Molecular biology molecular weight Peptides phase transition Phase transitions Polymers Polypeptides proline Protein Engineering Protein Engineering - methods Protein expression Proteins Review Studies Temperature Transition temperatures |
title | Elastin-like polypeptides as a promising family of genetically-engineered protein based polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastin-like%20polypeptides%20as%20a%20promising%20family%20of%20genetically-engineered%20protein%20based%20polymers&rft.jtitle=World%20journal%20of%20microbiology%20&%20biotechnology&rft.au=Kowalczyk,%20Tomasz&rft.date=2014-08-01&rft.volume=30&rft.issue=8&rft.spage=2141&rft.epage=2152&rft.pages=2141-2152&rft.issn=0959-3993&rft.eissn=1573-0972&rft_id=info:doi/10.1007/s11274-014-1649-5&rft_dat=%3Cproquest_pubme%3E3350490451%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1540736068&rft_id=info:pmid/24699809&rfr_iscdi=true |