How Fast is Your Camera? Timescales for Molecular Motion and their Role in Restraining Molecular Dynamics

High-resolution structural information is routinely available for soluble proteins, largely from x-ray crystallography and solution nuclear magnetic resonance (NMR). However, these techniques are far harder to apply to membrane-bound proteins; membrane proteins are generally reluctant to crystallize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2014-06, Vol.106 (12), p.2549-2551
Hauptverfasser: Romo, Tod D., Grossfield, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2551
container_issue 12
container_start_page 2549
container_title Biophysical journal
container_volume 106
creator Romo, Tod D.
Grossfield, Alan
description High-resolution structural information is routinely available for soluble proteins, largely from x-ray crystallography and solution nuclear magnetic resonance (NMR). However, these techniques are far harder to apply to membrane-bound proteins; membrane proteins are generally reluctant to crystallize, and the need for a surrounding lipid matrix generally means that NMR must be performed under solid-state as opposed to solution conditions. The latter imposes some restrictions on the kinds of information that can be readily extracted from experiments, and one often must rely on experimental methods such as residual dipolar coupling and chemical shift anisotropy, which yield information about the orientations of specific moieties relative to the magnetic field.
doi_str_mv 10.1016/j.bpj.2014.05.022
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4070275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349514005268</els_id><sourcerecordid>3357691221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-7b776422c663372b69bdef4ad9fd5f136b86143ed7ed07a473b273d90910e6473</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EotvCD-CCLHHhkjB2HLsREghtKUUqQqrKgZPl2JPWq8Te2klR_z1ebakKB062Nd88z5tHyCsGNQMm323qfrupOTBRQ1sD50_IirWCVwDH8ilZAYCsGtG1B-Qw5w0A4y2w5-SAi06AUmxF_Fn8RU9NnqnP9GdcEl2bCZP5SC_9hNmaETMdYqLf4oh2Gc3uNvsYqAmOztfoE70oJeoDvcA8J-ODD1eP8JO7YCZv8wvybDBjxpf35xH5cfr5cn1WnX__8nX96byyQnVzpXqlpODcStk0ivey6x0OwrhucO3AGtkfSyYadAodKCNU03PVuA46BijL84h82Otul35CZzGUoUa9TX4y6U5H4_XfleCv9VW81WUjwFVbBN7eC6R4sxRPevLZ4jiagHHJmrVNJ6Ta__XmH3RTVhiKvUIJpjrJQRSK7SmbYs4Jh4dhGOhdkHqjS5B6F6SGVpcgS8_rxy4eOv4kV4D3ewDLLm89Jp2tx2DR-YR21i76_8j_BqOpriI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541796204</pqid></control><display><type>article</type><title>How Fast is Your Camera? Timescales for Molecular Motion and their Role in Restraining Molecular Dynamics</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>PubMed Central</source><creator>Romo, Tod D. ; Grossfield, Alan</creator><creatorcontrib>Romo, Tod D. ; Grossfield, Alan</creatorcontrib><description>High-resolution structural information is routinely available for soluble proteins, largely from x-ray crystallography and solution nuclear magnetic resonance (NMR). However, these techniques are far harder to apply to membrane-bound proteins; membrane proteins are generally reluctant to crystallize, and the need for a surrounding lipid matrix generally means that NMR must be performed under solid-state as opposed to solution conditions. The latter imposes some restrictions on the kinds of information that can be readily extracted from experiments, and one often must rely on experimental methods such as residual dipolar coupling and chemical shift anisotropy, which yield information about the orientations of specific moieties relative to the magnetic field.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2014.05.022</identifier><identifier>PMID: 24940771</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biophysics ; Calcium-Binding Proteins - chemistry ; Crystallography ; Lipid Bilayers - metabolism ; Magnetic Resonance Spectroscopy ; Membranes ; Molecular Dynamics Simulation ; Muscle Proteins - chemistry ; New and Notable ; NMR ; Nuclear magnetic resonance ; Proteins ; Proteolipids - chemistry ; Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism ; Solid solutions</subject><ispartof>Biophysical journal, 2014-06, Vol.106 (12), p.2549-2551</ispartof><rights>2014 Biophysical Society</rights><rights>Copyright Biophysical Society Jun 17, 2014</rights><rights>2014 by the Biophysical Society. 2014 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-7b776422c663372b69bdef4ad9fd5f136b86143ed7ed07a473b273d90910e6473</citedby><cites>FETCH-LOGICAL-c479t-7b776422c663372b69bdef4ad9fd5f136b86143ed7ed07a473b273d90910e6473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070275/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2014.05.022$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,3551,27929,27930,46000,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24940771$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romo, Tod D.</creatorcontrib><creatorcontrib>Grossfield, Alan</creatorcontrib><title>How Fast is Your Camera? Timescales for Molecular Motion and their Role in Restraining Molecular Dynamics</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>High-resolution structural information is routinely available for soluble proteins, largely from x-ray crystallography and solution nuclear magnetic resonance (NMR). However, these techniques are far harder to apply to membrane-bound proteins; membrane proteins are generally reluctant to crystallize, and the need for a surrounding lipid matrix generally means that NMR must be performed under solid-state as opposed to solution conditions. The latter imposes some restrictions on the kinds of information that can be readily extracted from experiments, and one often must rely on experimental methods such as residual dipolar coupling and chemical shift anisotropy, which yield information about the orientations of specific moieties relative to the magnetic field.</description><subject>Biophysics</subject><subject>Calcium-Binding Proteins - chemistry</subject><subject>Crystallography</subject><subject>Lipid Bilayers - metabolism</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Membranes</subject><subject>Molecular Dynamics Simulation</subject><subject>Muscle Proteins - chemistry</subject><subject>New and Notable</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Proteins</subject><subject>Proteolipids - chemistry</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</subject><subject>Solid solutions</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0EotvCD-CCLHHhkjB2HLsREghtKUUqQqrKgZPl2JPWq8Te2klR_z1ebakKB062Nd88z5tHyCsGNQMm323qfrupOTBRQ1sD50_IirWCVwDH8ilZAYCsGtG1B-Qw5w0A4y2w5-SAi06AUmxF_Fn8RU9NnqnP9GdcEl2bCZP5SC_9hNmaETMdYqLf4oh2Gc3uNvsYqAmOztfoE70oJeoDvcA8J-ODD1eP8JO7YCZv8wvybDBjxpf35xH5cfr5cn1WnX__8nX96byyQnVzpXqlpODcStk0ivey6x0OwrhucO3AGtkfSyYadAodKCNU03PVuA46BijL84h82Otul35CZzGUoUa9TX4y6U5H4_XfleCv9VW81WUjwFVbBN7eC6R4sxRPevLZ4jiagHHJmrVNJ6Ta__XmH3RTVhiKvUIJpjrJQRSK7SmbYs4Jh4dhGOhdkHqjS5B6F6SGVpcgS8_rxy4eOv4kV4D3ewDLLm89Jp2tx2DR-YR21i76_8j_BqOpriI</recordid><startdate>20140617</startdate><enddate>20140617</enddate><creator>Romo, Tod D.</creator><creator>Grossfield, Alan</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140617</creationdate><title>How Fast is Your Camera? Timescales for Molecular Motion and their Role in Restraining Molecular Dynamics</title><author>Romo, Tod D. ; Grossfield, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-7b776422c663372b69bdef4ad9fd5f136b86143ed7ed07a473b273d90910e6473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biophysics</topic><topic>Calcium-Binding Proteins - chemistry</topic><topic>Crystallography</topic><topic>Lipid Bilayers - metabolism</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Membranes</topic><topic>Molecular Dynamics Simulation</topic><topic>Muscle Proteins - chemistry</topic><topic>New and Notable</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Proteins</topic><topic>Proteolipids - chemistry</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism</topic><topic>Solid solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romo, Tod D.</creatorcontrib><creatorcontrib>Grossfield, Alan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romo, Tod D.</au><au>Grossfield, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Fast is Your Camera? Timescales for Molecular Motion and their Role in Restraining Molecular Dynamics</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2014-06-17</date><risdate>2014</risdate><volume>106</volume><issue>12</issue><spage>2549</spage><epage>2551</epage><pages>2549-2551</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>High-resolution structural information is routinely available for soluble proteins, largely from x-ray crystallography and solution nuclear magnetic resonance (NMR). However, these techniques are far harder to apply to membrane-bound proteins; membrane proteins are generally reluctant to crystallize, and the need for a surrounding lipid matrix generally means that NMR must be performed under solid-state as opposed to solution conditions. The latter imposes some restrictions on the kinds of information that can be readily extracted from experiments, and one often must rely on experimental methods such as residual dipolar coupling and chemical shift anisotropy, which yield information about the orientations of specific moieties relative to the magnetic field.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24940771</pmid><doi>10.1016/j.bpj.2014.05.022</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2014-06, Vol.106 (12), p.2549-2551
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4070275
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); PubMed Central
subjects Biophysics
Calcium-Binding Proteins - chemistry
Crystallography
Lipid Bilayers - metabolism
Magnetic Resonance Spectroscopy
Membranes
Molecular Dynamics Simulation
Muscle Proteins - chemistry
New and Notable
NMR
Nuclear magnetic resonance
Proteins
Proteolipids - chemistry
Sarcoplasmic Reticulum Calcium-Transporting ATPases - metabolism
Solid solutions
title How Fast is Your Camera? Timescales for Molecular Motion and their Role in Restraining Molecular Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Fast%20is%20Your%20Camera?%20Timescales%20for%20Molecular%20Motion%20and%20their%20Role%20in%20Restraining%20Molecular%20Dynamics&rft.jtitle=Biophysical%20journal&rft.au=Romo,%20Tod%C2%A0D.&rft.date=2014-06-17&rft.volume=106&rft.issue=12&rft.spage=2549&rft.epage=2551&rft.pages=2549-2551&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2014.05.022&rft_dat=%3Cproquest_pubme%3E3357691221%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541796204&rft_id=info:pmid/24940771&rft_els_id=S0006349514005268&rfr_iscdi=true