A Theoretical Study of Single-Atom Catalysis of CO Oxidation Using Au Embedded 2D h-BN Monolayer: A CO-Promoted O2 Activation

The CO oxidation behaviors on single Au atom embedded in two-dimensional h -BN monolayer are investigated on the basis of first-principles calculations, quantum Born-Oppenheim molecular dynamic simulations (BOMD) and micro-kinetic analysis. We show that CO oxidation on h -BN monolayer support single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2014-06, Vol.4 (1), p.5441-5441, Article 5441
Hauptverfasser: Mao, Keke, Li, Lei, Zhang, Wenhua, Pei, Yong, Zeng, Xiao Cheng, Wu, Xiaojun, Yang, Jinlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The CO oxidation behaviors on single Au atom embedded in two-dimensional h -BN monolayer are investigated on the basis of first-principles calculations, quantum Born-Oppenheim molecular dynamic simulations (BOMD) and micro-kinetic analysis. We show that CO oxidation on h -BN monolayer support single gold atom prefers an unreported tri-molecular Eley-Rideal (E-R) reaction, where O 2 molecule is activated by two pre-adsorbed CO molecules. The formed OCOAuOCO intermediate dissociates into two CO 2 molecules synchronously, which is the rate-limiting step with an energy barrier of 0.47 eV. By using the micro-kinetic analysis, the CO oxidation following the tri-molecular E-R reaction pathway entails much higher reaction rate (1.43 × 10 5  s −1 ) than that of bimolecular Langmuir-Hinshelwood (L-H) pathway (4.29 s −1 ). Further, the quantum BOMD simulation at the temperature of 300 K demonstrates the complete reaction process in real time.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep05441