Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures

The growth dynamics of populations of interacting species in the aquatic environment is of great importance, both for understanding natural ecosystems and in efforts to cultivate these organisms for industrial purposes. Here we consider a simple two-species system wherein the bacterium Mesorhizobium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2014-07, Vol.8 (7), p.1418-1427
Hauptverfasser: Grant, Matthew AA, Kazamia, Elena, Cicuta, Pietro, Smith, Alison G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1427
container_issue 7
container_start_page 1418
container_title The ISME Journal
container_volume 8
creator Grant, Matthew AA
Kazamia, Elena
Cicuta, Pietro
Smith, Alison G
description The growth dynamics of populations of interacting species in the aquatic environment is of great importance, both for understanding natural ecosystems and in efforts to cultivate these organisms for industrial purposes. Here we consider a simple two-species system wherein the bacterium Mesorhizobium loti supplies vitamin B 12 (cobalamin) to the freshwater green alga Lobomonas rostrata , which requires this organic micronutrient for growth. In return, the bacterium receives photosynthate from the alga. Mathematical models are developed that describe minimally the interdependence between the two organisms, and that fit the experimental observations of the consortium. These models enable us to distinguish between different mechanisms of nutrient exchange between the organisms, and provide strong evidence that, rather than undergoing simple lysis and release of nutrients into the medium, M. loti regulates the levels of cobalamin it produces, resulting in a true mutualism with L. rostrata . Over half of all microalgae are dependent on an exogenous source of cobalamin for growth, and this vitamin is synthesised only by bacteria; it is very likely that similar symbiotic interactions underpin algal productivity more generally.
doi_str_mv 10.1038/ismej.2014.9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4069406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3347250481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3659-a9d3d151c0b7948eb762c1cf9031d1196391da6c296e26fa244a89d171a3de7e3</originalsourceid><addsrcrecordid>eNptkc9u1DAQxi0EoqVw44wsceFAFo-d2OsLUil_pUpc4Gw59iTrVRIXOynsjXfgDXkSvGxZFcRh5JHmN9_400fIY2ArYGL9IuQRtyvOoF7pO-QUVAOVEordPfaSn5AHOW8Za5SU6j454XXDOZf8lMTXIaGbKX5zGzv1SGNHr8NsxzDRV8BpyNTjGKc8Jzujp-2OjtHjMISpp_MGaZ_i13lD_W4qOy7v9-3Q2-Hn9x-tdTOmYAfqoluGeUmYH5J7nR0yPrp5z8jnt28-XbyvLj---3Bxflk5IRtdWe2FhwYca5Wu19gqyR24TjMBHkBLocFb6biWyGVneV3btfagwAqPCsUZeXnQvVraEb3DqRgYzFUKo007E20wf0-msDF9vDY1k7pUEXh2I5DilwXzbMaQXTFuJ4xLNtDUDDiwtSro03_QbVzSVOwVSuhaKK32gs8PlEsx54Td8TPAzD5J8ztJs0_S6II_uW3gCP-JrgDVAchlVJJLt67-T_AXI4ir_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1539437976</pqid></control><display><type>article</type><title>Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Grant, Matthew AA ; Kazamia, Elena ; Cicuta, Pietro ; Smith, Alison G</creator><creatorcontrib>Grant, Matthew AA ; Kazamia, Elena ; Cicuta, Pietro ; Smith, Alison G</creatorcontrib><description>The growth dynamics of populations of interacting species in the aquatic environment is of great importance, both for understanding natural ecosystems and in efforts to cultivate these organisms for industrial purposes. Here we consider a simple two-species system wherein the bacterium Mesorhizobium loti supplies vitamin B 12 (cobalamin) to the freshwater green alga Lobomonas rostrata , which requires this organic micronutrient for growth. In return, the bacterium receives photosynthate from the alga. Mathematical models are developed that describe minimally the interdependence between the two organisms, and that fit the experimental observations of the consortium. These models enable us to distinguish between different mechanisms of nutrient exchange between the organisms, and provide strong evidence that, rather than undergoing simple lysis and release of nutrients into the medium, M. loti regulates the levels of cobalamin it produces, resulting in a true mutualism with L. rostrata . Over half of all microalgae are dependent on an exogenous source of cobalamin for growth, and this vitamin is synthesised only by bacteria; it is very likely that similar symbiotic interactions underpin algal productivity more generally.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2014.9</identifier><identifier>PMID: 24522262</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/1745 ; 631/326/2565/855 ; 631/326/41/547 ; Algae ; Aquatic environment ; Aquatic plants ; Biomedical and Life Sciences ; Chlorophyta - metabolism ; Coculture Techniques ; Ecology ; Ecosystem ; Evolutionary Biology ; Fresh Water - microbiology ; Life Sciences ; Mathematical models ; Mesorhizobium - metabolism ; Microalgae ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Models, Statistical ; Mutualism ; Nutrients ; Original ; original-article ; Symbiosis ; Vitamin B 12 - metabolism</subject><ispartof>The ISME Journal, 2014-07, Vol.8 (7), p.1418-1427</ispartof><rights>International Society for Microbial Ecology 2014</rights><rights>Copyright Nature Publishing Group Jul 2014</rights><rights>Copyright © 2014 International Society for Microbial Ecology 2014 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3659-a9d3d151c0b7948eb762c1cf9031d1196391da6c296e26fa244a89d171a3de7e3</citedby><cites>FETCH-LOGICAL-c3659-a9d3d151c0b7948eb762c1cf9031d1196391da6c296e26fa244a89d171a3de7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4069406/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4069406/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24522262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grant, Matthew AA</creatorcontrib><creatorcontrib>Kazamia, Elena</creatorcontrib><creatorcontrib>Cicuta, Pietro</creatorcontrib><creatorcontrib>Smith, Alison G</creatorcontrib><title>Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>The growth dynamics of populations of interacting species in the aquatic environment is of great importance, both for understanding natural ecosystems and in efforts to cultivate these organisms for industrial purposes. Here we consider a simple two-species system wherein the bacterium Mesorhizobium loti supplies vitamin B 12 (cobalamin) to the freshwater green alga Lobomonas rostrata , which requires this organic micronutrient for growth. In return, the bacterium receives photosynthate from the alga. Mathematical models are developed that describe minimally the interdependence between the two organisms, and that fit the experimental observations of the consortium. These models enable us to distinguish between different mechanisms of nutrient exchange between the organisms, and provide strong evidence that, rather than undergoing simple lysis and release of nutrients into the medium, M. loti regulates the levels of cobalamin it produces, resulting in a true mutualism with L. rostrata . Over half of all microalgae are dependent on an exogenous source of cobalamin for growth, and this vitamin is synthesised only by bacteria; it is very likely that similar symbiotic interactions underpin algal productivity more generally.</description><subject>631/158/1745</subject><subject>631/326/2565/855</subject><subject>631/326/41/547</subject><subject>Algae</subject><subject>Aquatic environment</subject><subject>Aquatic plants</subject><subject>Biomedical and Life Sciences</subject><subject>Chlorophyta - metabolism</subject><subject>Coculture Techniques</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Evolutionary Biology</subject><subject>Fresh Water - microbiology</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Mesorhizobium - metabolism</subject><subject>Microalgae</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Models, Statistical</subject><subject>Mutualism</subject><subject>Nutrients</subject><subject>Original</subject><subject>original-article</subject><subject>Symbiosis</subject><subject>Vitamin B 12 - metabolism</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc9u1DAQxi0EoqVw44wsceFAFo-d2OsLUil_pUpc4Gw59iTrVRIXOynsjXfgDXkSvGxZFcRh5JHmN9_400fIY2ArYGL9IuQRtyvOoF7pO-QUVAOVEordPfaSn5AHOW8Za5SU6j454XXDOZf8lMTXIaGbKX5zGzv1SGNHr8NsxzDRV8BpyNTjGKc8Jzujp-2OjtHjMISpp_MGaZ_i13lD_W4qOy7v9-3Q2-Hn9x-tdTOmYAfqoluGeUmYH5J7nR0yPrp5z8jnt28-XbyvLj---3Bxflk5IRtdWe2FhwYca5Wu19gqyR24TjMBHkBLocFb6biWyGVneV3btfagwAqPCsUZeXnQvVraEb3DqRgYzFUKo007E20wf0-msDF9vDY1k7pUEXh2I5DilwXzbMaQXTFuJ4xLNtDUDDiwtSro03_QbVzSVOwVSuhaKK32gs8PlEsx54Td8TPAzD5J8ztJs0_S6II_uW3gCP-JrgDVAchlVJJLt67-T_AXI4ir_w</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Grant, Matthew AA</creator><creator>Kazamia, Elena</creator><creator>Cicuta, Pietro</creator><creator>Smith, Alison G</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201407</creationdate><title>Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures</title><author>Grant, Matthew AA ; Kazamia, Elena ; Cicuta, Pietro ; Smith, Alison G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3659-a9d3d151c0b7948eb762c1cf9031d1196391da6c296e26fa244a89d171a3de7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>631/158/1745</topic><topic>631/326/2565/855</topic><topic>631/326/41/547</topic><topic>Algae</topic><topic>Aquatic environment</topic><topic>Aquatic plants</topic><topic>Biomedical and Life Sciences</topic><topic>Chlorophyta - metabolism</topic><topic>Coculture Techniques</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Evolutionary Biology</topic><topic>Fresh Water - microbiology</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Mesorhizobium - metabolism</topic><topic>Microalgae</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Models, Statistical</topic><topic>Mutualism</topic><topic>Nutrients</topic><topic>Original</topic><topic>original-article</topic><topic>Symbiosis</topic><topic>Vitamin B 12 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grant, Matthew AA</creatorcontrib><creatorcontrib>Kazamia, Elena</creatorcontrib><creatorcontrib>Cicuta, Pietro</creatorcontrib><creatorcontrib>Smith, Alison G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grant, Matthew AA</au><au>Kazamia, Elena</au><au>Cicuta, Pietro</au><au>Smith, Alison G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2014-07</date><risdate>2014</risdate><volume>8</volume><issue>7</issue><spage>1418</spage><epage>1427</epage><pages>1418-1427</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>The growth dynamics of populations of interacting species in the aquatic environment is of great importance, both for understanding natural ecosystems and in efforts to cultivate these organisms for industrial purposes. Here we consider a simple two-species system wherein the bacterium Mesorhizobium loti supplies vitamin B 12 (cobalamin) to the freshwater green alga Lobomonas rostrata , which requires this organic micronutrient for growth. In return, the bacterium receives photosynthate from the alga. Mathematical models are developed that describe minimally the interdependence between the two organisms, and that fit the experimental observations of the consortium. These models enable us to distinguish between different mechanisms of nutrient exchange between the organisms, and provide strong evidence that, rather than undergoing simple lysis and release of nutrients into the medium, M. loti regulates the levels of cobalamin it produces, resulting in a true mutualism with L. rostrata . Over half of all microalgae are dependent on an exogenous source of cobalamin for growth, and this vitamin is synthesised only by bacteria; it is very likely that similar symbiotic interactions underpin algal productivity more generally.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24522262</pmid><doi>10.1038/ismej.2014.9</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2014-07, Vol.8 (7), p.1418-1427
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4069406
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 631/158/1745
631/326/2565/855
631/326/41/547
Algae
Aquatic environment
Aquatic plants
Biomedical and Life Sciences
Chlorophyta - metabolism
Coculture Techniques
Ecology
Ecosystem
Evolutionary Biology
Fresh Water - microbiology
Life Sciences
Mathematical models
Mesorhizobium - metabolism
Microalgae
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Models, Statistical
Mutualism
Nutrients
Original
original-article
Symbiosis
Vitamin B 12 - metabolism
title Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20exchange%20of%20vitamin%20B12%20is%20demonstrated%20by%20modelling%20the%20growth%20dynamics%20of%20algal%E2%80%93bacterial%20cocultures&rft.jtitle=The%20ISME%20Journal&rft.au=Grant,%20Matthew%20AA&rft.date=2014-07&rft.volume=8&rft.issue=7&rft.spage=1418&rft.epage=1427&rft.pages=1418-1427&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2014.9&rft_dat=%3Cproquest_pubme%3E3347250481%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1539437976&rft_id=info:pmid/24522262&rfr_iscdi=true