Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation

High-throughput prioritization of cancer-causing mutations (drivers) is a key challenge of cancer genome projects, due to the number of somatic variants detected in tumors. One important step in this task is to assess the functional impact of tumor somatic mutations. A number of computational method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome medicine 2012-11, Vol.4 (11), p.89-89, Article 89
Hauptverfasser: Gonzalez-Perez, Abel, Deu-Pons, Jordi, Lopez-Bigas, Nuria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue 11
container_start_page 89
container_title Genome medicine
container_volume 4
creator Gonzalez-Perez, Abel
Deu-Pons, Jordi
Lopez-Bigas, Nuria
description High-throughput prioritization of cancer-causing mutations (drivers) is a key challenge of cancer genome projects, due to the number of somatic variants detected in tumors. One important step in this task is to assess the functional impact of tumor somatic mutations. A number of computational methods have been employed for that purpose, although most were originally developed to distinguish disease-related nonsynonymous single nucleotide variants (nsSNVs) from polymorphisms. Our new method, transformed Functional Impact score for Cancer (transFIC), improves the assessment of the functional impact of tumor nsSNVs by taking into account the baseline tolerance of genes to functional variants.
doi_str_mv 10.1186/gm390
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4064314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1547849464</sourcerecordid><originalsourceid>FETCH-LOGICAL-b553t-dad6246952f5bc6e1f0311c2abd13ccdae00ac13a532ba58180914dd56eefeeb3</originalsourceid><addsrcrecordid>eNqNUk1r3DAQFaWlSdP8haJLoZdtNZIs25dCCf0IBHppoTchyeONgmW5khzIv6_t3S7JodCDGI3ee_OlIeQS2HuARn3YB9GyZ-Qc6krt2lb-ev7ofkZe5XzHmJJc1i_JGRfQQM3FObm7DlOK937c03KLdErYeVd8HGnst5d-HjffDNSHybiyAs6MDhMNczErlql9oNZkHPyItMQB00qgZTG5jylsrNfkRW-GjJdHe0F-fvn84-rb7ub71-urTzc7W1Wi7DrTKS5VW_G-sk4h9EwAOG5sB8K5ziBjxoEwleDWVA00rAXZdZVC7BGtuCAfD3Gn2QbsHI5LHYOekg8mPehovH6KjP5W7-O9lst8BMglABwCuDw7nXBp1ZmyCU_OejirueacqUYtmuagsT7-I-lTxMWgtz9bpO-O9ab4e8ZcdPDZ4TCYEeOcNSxjAbYkq_-DKutGtlKtTbw9NpFizgn7Uy3A9Loxp-xvHk_rxPq7IuIPlnTAvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1547849464</pqid></control><display><type>article</type><title>Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation</title><source>Springer Online Journals Complete</source><source>DOAJ Directory of Open Access Journals</source><source>Recercat</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>PubMed Central Open Access</source><creator>Gonzalez-Perez, Abel ; Deu-Pons, Jordi ; Lopez-Bigas, Nuria</creator><creatorcontrib>Gonzalez-Perez, Abel ; Deu-Pons, Jordi ; Lopez-Bigas, Nuria</creatorcontrib><description>High-throughput prioritization of cancer-causing mutations (drivers) is a key challenge of cancer genome projects, due to the number of somatic variants detected in tumors. One important step in this task is to assess the functional impact of tumor somatic mutations. A number of computational methods have been employed for that purpose, although most were originally developed to distinguish disease-related nonsynonymous single nucleotide variants (nsSNVs) from polymorphisms. Our new method, transformed Functional Impact score for Cancer (transFIC), improves the assessment of the functional impact of tumor nsSNVs by taking into account the baseline tolerance of genes to functional variants.</description><identifier>ISSN: 1756-994X</identifier><identifier>EISSN: 1756-994X</identifier><identifier>DOI: 10.1186/gm390</identifier><identifier>PMID: 23181723</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Method</subject><ispartof>Genome medicine, 2012-11, Vol.4 (11), p.89-89, Article 89</ispartof><rights>Gonzalez-Perez et al. Creative Commons Attribution License info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by/2.0/"&gt;http://creativecommons.org/licenses/by/2.0/&lt;/a&gt;</rights><rights>Copyright © 2013 Gonzalez-Perez et al.; licensee BioMed Central Ltd. 2013 Gonzalez-Perez et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b553t-dad6246952f5bc6e1f0311c2abd13ccdae00ac13a532ba58180914dd56eefeeb3</citedby><cites>FETCH-LOGICAL-b553t-dad6246952f5bc6e1f0311c2abd13ccdae00ac13a532ba58180914dd56eefeeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064314/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064314/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,26951,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23181723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gonzalez-Perez, Abel</creatorcontrib><creatorcontrib>Deu-Pons, Jordi</creatorcontrib><creatorcontrib>Lopez-Bigas, Nuria</creatorcontrib><title>Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation</title><title>Genome medicine</title><addtitle>Genome Med</addtitle><description>High-throughput prioritization of cancer-causing mutations (drivers) is a key challenge of cancer genome projects, due to the number of somatic variants detected in tumors. One important step in this task is to assess the functional impact of tumor somatic mutations. A number of computational methods have been employed for that purpose, although most were originally developed to distinguish disease-related nonsynonymous single nucleotide variants (nsSNVs) from polymorphisms. Our new method, transformed Functional Impact score for Cancer (transFIC), improves the assessment of the functional impact of tumor nsSNVs by taking into account the baseline tolerance of genes to functional variants.</description><subject>Method</subject><issn>1756-994X</issn><issn>1756-994X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNqNUk1r3DAQFaWlSdP8haJLoZdtNZIs25dCCf0IBHppoTchyeONgmW5khzIv6_t3S7JodCDGI3ee_OlIeQS2HuARn3YB9GyZ-Qc6krt2lb-ev7ofkZe5XzHmJJc1i_JGRfQQM3FObm7DlOK937c03KLdErYeVd8HGnst5d-HjffDNSHybiyAs6MDhMNczErlql9oNZkHPyItMQB00qgZTG5jylsrNfkRW-GjJdHe0F-fvn84-rb7ub71-urTzc7W1Wi7DrTKS5VW_G-sk4h9EwAOG5sB8K5ziBjxoEwleDWVA00rAXZdZVC7BGtuCAfD3Gn2QbsHI5LHYOekg8mPehovH6KjP5W7-O9lst8BMglABwCuDw7nXBp1ZmyCU_OejirueacqUYtmuagsT7-I-lTxMWgtz9bpO-O9ab4e8ZcdPDZ4TCYEeOcNSxjAbYkq_-DKutGtlKtTbw9NpFizgn7Uy3A9Loxp-xvHk_rxPq7IuIPlnTAvg</recordid><startdate>20121126</startdate><enddate>20121126</enddate><creator>Gonzalez-Perez, Abel</creator><creator>Deu-Pons, Jordi</creator><creator>Lopez-Bigas, Nuria</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>XX2</scope><scope>5PM</scope></search><sort><creationdate>20121126</creationdate><title>Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation</title><author>Gonzalez-Perez, Abel ; Deu-Pons, Jordi ; Lopez-Bigas, Nuria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b553t-dad6246952f5bc6e1f0311c2abd13ccdae00ac13a532ba58180914dd56eefeeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez-Perez, Abel</creatorcontrib><creatorcontrib>Deu-Pons, Jordi</creatorcontrib><creatorcontrib>Lopez-Bigas, Nuria</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez-Perez, Abel</au><au>Deu-Pons, Jordi</au><au>Lopez-Bigas, Nuria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation</atitle><jtitle>Genome medicine</jtitle><addtitle>Genome Med</addtitle><date>2012-11-26</date><risdate>2012</risdate><volume>4</volume><issue>11</issue><spage>89</spage><epage>89</epage><pages>89-89</pages><artnum>89</artnum><issn>1756-994X</issn><eissn>1756-994X</eissn><abstract>High-throughput prioritization of cancer-causing mutations (drivers) is a key challenge of cancer genome projects, due to the number of somatic variants detected in tumors. One important step in this task is to assess the functional impact of tumor somatic mutations. A number of computational methods have been employed for that purpose, although most were originally developed to distinguish disease-related nonsynonymous single nucleotide variants (nsSNVs) from polymorphisms. Our new method, transformed Functional Impact score for Cancer (transFIC), improves the assessment of the functional impact of tumor nsSNVs by taking into account the baseline tolerance of genes to functional variants.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>23181723</pmid><doi>10.1186/gm390</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-994X
ispartof Genome medicine, 2012-11, Vol.4 (11), p.89-89, Article 89
issn 1756-994X
1756-994X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4064314
source Springer Online Journals Complete; DOAJ Directory of Open Access Journals; Recercat; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Springer Nature OA/Free Journals; PubMed Central Open Access
subjects Method
title Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A13%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20prediction%20of%20the%20functional%20impact%20of%20cancer%20mutations%20by%20baseline%20tolerance%20transformation&rft.jtitle=Genome%20medicine&rft.au=Gonzalez-Perez,%20Abel&rft.date=2012-11-26&rft.volume=4&rft.issue=11&rft.spage=89&rft.epage=89&rft.pages=89-89&rft.artnum=89&rft.issn=1756-994X&rft.eissn=1756-994X&rft_id=info:doi/10.1186/gm390&rft_dat=%3Cproquest_pubme%3E1547849464%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1547849464&rft_id=info:pmid/23181723&rfr_iscdi=true