Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster
The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today,...
Gespeichert in:
Veröffentlicht in: | Methods (San Diego, Calif.) Calif.), 2014-06, Vol.68 (1), p.15-28 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 15 |
container_title | Methods (San Diego, Calif.) |
container_volume | 68 |
creator | Venken, Koen J.T. Bellen, Hugo J. |
description | The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters. |
doi_str_mv | 10.1016/j.ymeth.2014.02.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4061744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202314000693</els_id><sourcerecordid>1566851474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-cdb638e4568ce959eebf7da252d3e6dd0a58cae8015049c15fda01eba986010b3</originalsourceid><addsrcrecordid>eNp9UU2PFCEQJUbjrqu_wMT00YM9FjQw9EGTzfiZbOJFz4SG6hkm3TACvcn-e2ln3ejFpBKg6r1XVTxCXlLYUKDy7XFzN2M5bBhQvgFWQzwilxR60fa0g8frncuWAesuyLOcjwBA2VY9JReMC9VR2l2ScXfA2VszNfNSzB5DftOUZEI-xRzXhwnunKg1zE2JjQ8FU4p7U7BZk824BFt8DLXSfEiVdzr4yTQzTiZUWK7w5-TJaKaML-7PK_Lj08fvuy_tzbfPX3fXN60VQpXWukF2CrmQymIvesRh3DrDBHMdSufACGUNKqACeG-pGJ0BioPplQQKQ3dF3p91T8swo7MY6uyTPiU_m3Sno_H630rwB72Pt5qDpFvOq8Dre4EUfy6Yi559tjjVVTAuWVMhpRKUb1dod4baunNOOD60oaBXh_RR_3ZIrw5pYDVEZb36e8IHzh9LKuDdGYD1n249Jp2tx2DR-YS2aBf9fxv8An7opww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566851474</pqid></control><display><type>article</type><title>Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Venken, Koen J.T. ; Bellen, Hugo J.</creator><creatorcontrib>Venken, Koen J.T. ; Bellen, Hugo J.</creatorcontrib><description>The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2014.02.025</identifier><identifier>PMID: 24583113</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Chemical mutagens ; Chromosome Mapping - methods ; Developmental Biology - methods ; DNA Transposable Elements - genetics ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth & development ; Enhancer bashing ; Enhancer Elements, Genetic ; Gene Expression Regulation, Developmental ; Genetic screens ; Genomic rescue ; Mutagenesis - genetics ; Mutagens ; Mutation mapping ; Overexpression ; RNA Interference ; Transgenes ; Transgenes - genetics ; Transposon mutagenesis ; Transposons</subject><ispartof>Methods (San Diego, Calif.), 2014-06, Vol.68 (1), p.15-28</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-cdb638e4568ce959eebf7da252d3e6dd0a58cae8015049c15fda01eba986010b3</citedby><cites>FETCH-LOGICAL-c558t-cdb638e4568ce959eebf7da252d3e6dd0a58cae8015049c15fda01eba986010b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymeth.2014.02.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24583113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venken, Koen J.T.</creatorcontrib><creatorcontrib>Bellen, Hugo J.</creatorcontrib><title>Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters.</description><subject>Animals</subject><subject>Chemical mutagens</subject><subject>Chromosome Mapping - methods</subject><subject>Developmental Biology - methods</subject><subject>DNA Transposable Elements - genetics</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth & development</subject><subject>Enhancer bashing</subject><subject>Enhancer Elements, Genetic</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic screens</subject><subject>Genomic rescue</subject><subject>Mutagenesis - genetics</subject><subject>Mutagens</subject><subject>Mutation mapping</subject><subject>Overexpression</subject><subject>RNA Interference</subject><subject>Transgenes</subject><subject>Transgenes - genetics</subject><subject>Transposon mutagenesis</subject><subject>Transposons</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2PFCEQJUbjrqu_wMT00YM9FjQw9EGTzfiZbOJFz4SG6hkm3TACvcn-e2ln3ejFpBKg6r1XVTxCXlLYUKDy7XFzN2M5bBhQvgFWQzwilxR60fa0g8frncuWAesuyLOcjwBA2VY9JReMC9VR2l2ScXfA2VszNfNSzB5DftOUZEI-xRzXhwnunKg1zE2JjQ8FU4p7U7BZk824BFt8DLXSfEiVdzr4yTQzTiZUWK7w5-TJaKaML-7PK_Lj08fvuy_tzbfPX3fXN60VQpXWukF2CrmQymIvesRh3DrDBHMdSufACGUNKqACeG-pGJ0BioPplQQKQ3dF3p91T8swo7MY6uyTPiU_m3Sno_H630rwB72Pt5qDpFvOq8Dre4EUfy6Yi559tjjVVTAuWVMhpRKUb1dod4baunNOOD60oaBXh_RR_3ZIrw5pYDVEZb36e8IHzh9LKuDdGYD1n249Jp2tx2DR-YS2aBf9fxv8An7opww</recordid><startdate>20140615</startdate><enddate>20140615</enddate><creator>Venken, Koen J.T.</creator><creator>Bellen, Hugo J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140615</creationdate><title>Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster</title><author>Venken, Koen J.T. ; Bellen, Hugo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-cdb638e4568ce959eebf7da252d3e6dd0a58cae8015049c15fda01eba986010b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Chemical mutagens</topic><topic>Chromosome Mapping - methods</topic><topic>Developmental Biology - methods</topic><topic>DNA Transposable Elements - genetics</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth & development</topic><topic>Enhancer bashing</topic><topic>Enhancer Elements, Genetic</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic screens</topic><topic>Genomic rescue</topic><topic>Mutagenesis - genetics</topic><topic>Mutagens</topic><topic>Mutation mapping</topic><topic>Overexpression</topic><topic>RNA Interference</topic><topic>Transgenes</topic><topic>Transgenes - genetics</topic><topic>Transposon mutagenesis</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venken, Koen J.T.</creatorcontrib><creatorcontrib>Bellen, Hugo J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venken, Koen J.T.</au><au>Bellen, Hugo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2014-06-15</date><risdate>2014</risdate><volume>68</volume><issue>1</issue><spage>15</spage><epage>28</epage><pages>15-28</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24583113</pmid><doi>10.1016/j.ymeth.2014.02.025</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-2023 |
ispartof | Methods (San Diego, Calif.), 2014-06, Vol.68 (1), p.15-28 |
issn | 1046-2023 1095-9130 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4061744 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Chemical mutagens Chromosome Mapping - methods Developmental Biology - methods DNA Transposable Elements - genetics Drosophila melanogaster Drosophila melanogaster - genetics Drosophila melanogaster - growth & development Enhancer bashing Enhancer Elements, Genetic Gene Expression Regulation, Developmental Genetic screens Genomic rescue Mutagenesis - genetics Mutagens Mutation mapping Overexpression RNA Interference Transgenes Transgenes - genetics Transposon mutagenesis Transposons |
title | Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20mutagens,%20transposons,%20and%20transgenes%20to%20interrogate%20gene%20function%20in%20Drosophila%20melanogaster&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Venken,%20Koen%20J.T.&rft.date=2014-06-15&rft.volume=68&rft.issue=1&rft.spage=15&rft.epage=28&rft.pages=15-28&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2014.02.025&rft_dat=%3Cproquest_pubme%3E1566851474%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566851474&rft_id=info:pmid/24583113&rft_els_id=S1046202314000693&rfr_iscdi=true |