Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster

The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods (San Diego, Calif.) Calif.), 2014-06, Vol.68 (1), p.15-28
Hauptverfasser: Venken, Koen J.T., Bellen, Hugo J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 15
container_title Methods (San Diego, Calif.)
container_volume 68
creator Venken, Koen J.T.
Bellen, Hugo J.
description The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters.
doi_str_mv 10.1016/j.ymeth.2014.02.025
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4061744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202314000693</els_id><sourcerecordid>1566851474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-cdb638e4568ce959eebf7da252d3e6dd0a58cae8015049c15fda01eba986010b3</originalsourceid><addsrcrecordid>eNp9UU2PFCEQJUbjrqu_wMT00YM9FjQw9EGTzfiZbOJFz4SG6hkm3TACvcn-e2ln3ejFpBKg6r1XVTxCXlLYUKDy7XFzN2M5bBhQvgFWQzwilxR60fa0g8frncuWAesuyLOcjwBA2VY9JReMC9VR2l2ScXfA2VszNfNSzB5DftOUZEI-xRzXhwnunKg1zE2JjQ8FU4p7U7BZk824BFt8DLXSfEiVdzr4yTQzTiZUWK7w5-TJaKaML-7PK_Lj08fvuy_tzbfPX3fXN60VQpXWukF2CrmQymIvesRh3DrDBHMdSufACGUNKqACeG-pGJ0BioPplQQKQ3dF3p91T8swo7MY6uyTPiU_m3Sno_H630rwB72Pt5qDpFvOq8Dre4EUfy6Yi559tjjVVTAuWVMhpRKUb1dod4baunNOOD60oaBXh_RR_3ZIrw5pYDVEZb36e8IHzh9LKuDdGYD1n249Jp2tx2DR-YS2aBf9fxv8An7opww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566851474</pqid></control><display><type>article</type><title>Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Venken, Koen J.T. ; Bellen, Hugo J.</creator><creatorcontrib>Venken, Koen J.T. ; Bellen, Hugo J.</creatorcontrib><description>The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2014.02.025</identifier><identifier>PMID: 24583113</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Chemical mutagens ; Chromosome Mapping - methods ; Developmental Biology - methods ; DNA Transposable Elements - genetics ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila melanogaster - growth &amp; development ; Enhancer bashing ; Enhancer Elements, Genetic ; Gene Expression Regulation, Developmental ; Genetic screens ; Genomic rescue ; Mutagenesis - genetics ; Mutagens ; Mutation mapping ; Overexpression ; RNA Interference ; Transgenes ; Transgenes - genetics ; Transposon mutagenesis ; Transposons</subject><ispartof>Methods (San Diego, Calif.), 2014-06, Vol.68 (1), p.15-28</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><rights>2014 Elsevier Inc. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-cdb638e4568ce959eebf7da252d3e6dd0a58cae8015049c15fda01eba986010b3</citedby><cites>FETCH-LOGICAL-c558t-cdb638e4568ce959eebf7da252d3e6dd0a58cae8015049c15fda01eba986010b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymeth.2014.02.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24583113$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venken, Koen J.T.</creatorcontrib><creatorcontrib>Bellen, Hugo J.</creatorcontrib><title>Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters.</description><subject>Animals</subject><subject>Chemical mutagens</subject><subject>Chromosome Mapping - methods</subject><subject>Developmental Biology - methods</subject><subject>DNA Transposable Elements - genetics</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - growth &amp; development</subject><subject>Enhancer bashing</subject><subject>Enhancer Elements, Genetic</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic screens</subject><subject>Genomic rescue</subject><subject>Mutagenesis - genetics</subject><subject>Mutagens</subject><subject>Mutation mapping</subject><subject>Overexpression</subject><subject>RNA Interference</subject><subject>Transgenes</subject><subject>Transgenes - genetics</subject><subject>Transposon mutagenesis</subject><subject>Transposons</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU2PFCEQJUbjrqu_wMT00YM9FjQw9EGTzfiZbOJFz4SG6hkm3TACvcn-e2ln3ejFpBKg6r1XVTxCXlLYUKDy7XFzN2M5bBhQvgFWQzwilxR60fa0g8frncuWAesuyLOcjwBA2VY9JReMC9VR2l2ScXfA2VszNfNSzB5DftOUZEI-xRzXhwnunKg1zE2JjQ8FU4p7U7BZk824BFt8DLXSfEiVdzr4yTQzTiZUWK7w5-TJaKaML-7PK_Lj08fvuy_tzbfPX3fXN60VQpXWukF2CrmQymIvesRh3DrDBHMdSufACGUNKqACeG-pGJ0BioPplQQKQ3dF3p91T8swo7MY6uyTPiU_m3Sno_H630rwB72Pt5qDpFvOq8Dre4EUfy6Yi559tjjVVTAuWVMhpRKUb1dod4baunNOOD60oaBXh_RR_3ZIrw5pYDVEZb36e8IHzh9LKuDdGYD1n249Jp2tx2DR-YS2aBf9fxv8An7opww</recordid><startdate>20140615</startdate><enddate>20140615</enddate><creator>Venken, Koen J.T.</creator><creator>Bellen, Hugo J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20140615</creationdate><title>Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster</title><author>Venken, Koen J.T. ; Bellen, Hugo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-cdb638e4568ce959eebf7da252d3e6dd0a58cae8015049c15fda01eba986010b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Chemical mutagens</topic><topic>Chromosome Mapping - methods</topic><topic>Developmental Biology - methods</topic><topic>DNA Transposable Elements - genetics</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - growth &amp; development</topic><topic>Enhancer bashing</topic><topic>Enhancer Elements, Genetic</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic screens</topic><topic>Genomic rescue</topic><topic>Mutagenesis - genetics</topic><topic>Mutagens</topic><topic>Mutation mapping</topic><topic>Overexpression</topic><topic>RNA Interference</topic><topic>Transgenes</topic><topic>Transgenes - genetics</topic><topic>Transposon mutagenesis</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venken, Koen J.T.</creatorcontrib><creatorcontrib>Bellen, Hugo J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venken, Koen J.T.</au><au>Bellen, Hugo J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2014-06-15</date><risdate>2014</risdate><volume>68</volume><issue>1</issue><spage>15</spage><epage>28</epage><pages>15-28</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>The study of genetics, genes, and chromosomal inheritance was initiated by Thomas Morgan in 1910, when the first visible mutations were identified in fruit flies. The field expanded upon the work initiated by Herman Muller in 1926 when he used X-rays to develop the first balancer chromosomes. Today, balancers are still invaluable to maintain mutations and transgenes but the arsenal of tools has expanded vastly and numerous new methods have been developed, many relying on the availability of the genome sequence and transposable elements. Forward genetic screens based on chemical mutagenesis or transposable elements have resulted in the unbiased identification of many novel players involved in processes probed by specific phenotypic assays. Reverse genetic approaches have relied on the availability of a carefully selected set of transposon insertions spread throughout the genome to allow the manipulation of the region in the vicinity of each insertion. Lastly, the ability to transform Drosophila with single copy transgenes using transposons or site-specific integration using the ΦC31 integrase has allowed numerous manipulations, including the ability to create and integrate genomic rescue constructs, generate duplications, RNAi knock-out technology, binary expression systems like the GAL4/UAS system as well as other methods. Here, we will discuss the most useful methodologies to interrogate the fruit fly genome in vivo focusing on chemical mutagenesis, transposons and transgenes. Genome engineering approaches based on nucleases and RNAi technology are discussed in following chapters.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24583113</pmid><doi>10.1016/j.ymeth.2014.02.025</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1046-2023
ispartof Methods (San Diego, Calif.), 2014-06, Vol.68 (1), p.15-28
issn 1046-2023
1095-9130
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4061744
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Chemical mutagens
Chromosome Mapping - methods
Developmental Biology - methods
DNA Transposable Elements - genetics
Drosophila melanogaster
Drosophila melanogaster - genetics
Drosophila melanogaster - growth & development
Enhancer bashing
Enhancer Elements, Genetic
Gene Expression Regulation, Developmental
Genetic screens
Genomic rescue
Mutagenesis - genetics
Mutagens
Mutation mapping
Overexpression
RNA Interference
Transgenes
Transgenes - genetics
Transposon mutagenesis
Transposons
title Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20mutagens,%20transposons,%20and%20transgenes%20to%20interrogate%20gene%20function%20in%20Drosophila%20melanogaster&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=Venken,%20Koen%20J.T.&rft.date=2014-06-15&rft.volume=68&rft.issue=1&rft.spage=15&rft.epage=28&rft.pages=15-28&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2014.02.025&rft_dat=%3Cproquest_pubme%3E1566851474%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566851474&rft_id=info:pmid/24583113&rft_els_id=S1046202314000693&rfr_iscdi=true