Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues

Abstract Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro , which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2014-07, Vol.35 (21), p.5462-5471
Hauptverfasser: McCain, Megan L, Agarwal, Ashutosh, Nesmith, Haley W, Nesmith, Alexander P, Parker, Kevin Kit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5471
container_issue 21
container_start_page 5462
container_title Biomaterials
container_volume 35
creator McCain, Megan L
Agarwal, Ashutosh
Nesmith, Haley W
Nesmith, Alexander P
Parker, Kevin Kit
description Abstract Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro , which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies.
doi_str_mv 10.1016/j.biomaterials.2014.03.052
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4057039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961214003123</els_id><sourcerecordid>2101314702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-f415be6880b057f700872b9b1d75bb15c9d44db40c4bc5cc8a7f31bbd343a54e3</originalsourceid><addsrcrecordid>eNqNUstuFDEQtBCILIFfQCNOXGbwcz3DIRJKeElBIAFny4-ejZcZO9ieiP17PNoQBU6crHZVV7eqGqEXBHcEk-2rfWd8nHWB5PWUO4oJ7zDrsKAP0Ib0sm_FgMVDtKkAbYctoSfoSc57XGvM6WN0QrlkRBK-QV8-eZviHCcHrtnBpIsPzdXBpViL3IwxNfCrQFhhu0xlSdDEsYGw8wEgrb86Oa9tU3zOC-Sn6NFYt4Jnt-8p-v7u7bfzD-3l5_cfz99ctlZIUdqRE2Fg2_fYYCFHiXEvqRkMcVIYQ4QdHOfOcGy5scLaXsuREWMc40wLDuwUnR11rxczg7MQStKTuk5-1umgovbqbyT4K7WLN4rXeZgNVeDlrUCKP-viRc0-W5gmHSAuWdHqNSNcYlqpr4_UalXOCca7MQSrNRK1V_cjUWskCjNVI6nNz-8vetf6J4NKuDgSquFw4yGpbD0EC84nsEW56P9vztk_MnbywVs9_YAD5H1cUlh7iMpUYfV1PY71NupNYEYoY78BS1e7dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101314702</pqid></control><display><type>article</type><title>Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>McCain, Megan L ; Agarwal, Ashutosh ; Nesmith, Haley W ; Nesmith, Alexander P ; Parker, Kevin Kit</creator><creatorcontrib>McCain, Megan L ; Agarwal, Ashutosh ; Nesmith, Haley W ; Nesmith, Alexander P ; Parker, Kevin Kit</creatorcontrib><description>Abstract Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro , which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2014.03.052</identifier><identifier>PMID: 24731714</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; biochemical pathways ; Biocompatible Materials - chemistry ; Biomimetic Materials - metabolism ; cardiomyocytes ; Cells, Cultured ; collagen ; Dentistry ; drugs ; Elastic Modulus ; extracellular matrix ; Fibronectins - metabolism ; gelatin ; Gelatin - chemistry ; humans ; hydrogels ; Hydrogels - chemistry ; Mechanotransduction ; Metabolism ; modulus of elasticity ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - drug effects ; Organs on chips ; Rats ; Rats, Sprague-Dawley ; screening ; synthetic products ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2014-07, Vol.35 (21), p.5462-5471</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>2014 Elsevier Ltd. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-f415be6880b057f700872b9b1d75bb15c9d44db40c4bc5cc8a7f31bbd343a54e3</citedby><cites>FETCH-LOGICAL-c575t-f415be6880b057f700872b9b1d75bb15c9d44db40c4bc5cc8a7f31bbd343a54e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2014.03.052$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24731714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCain, Megan L</creatorcontrib><creatorcontrib>Agarwal, Ashutosh</creatorcontrib><creatorcontrib>Nesmith, Haley W</creatorcontrib><creatorcontrib>Nesmith, Alexander P</creatorcontrib><creatorcontrib>Parker, Kevin Kit</creatorcontrib><title>Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro , which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>biochemical pathways</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomimetic Materials - metabolism</subject><subject>cardiomyocytes</subject><subject>Cells, Cultured</subject><subject>collagen</subject><subject>Dentistry</subject><subject>drugs</subject><subject>Elastic Modulus</subject><subject>extracellular matrix</subject><subject>Fibronectins - metabolism</subject><subject>gelatin</subject><subject>Gelatin - chemistry</subject><subject>humans</subject><subject>hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Mechanotransduction</subject><subject>Metabolism</subject><subject>modulus of elasticity</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Organs on chips</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>screening</subject><subject>synthetic products</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUstuFDEQtBCILIFfQCNOXGbwcz3DIRJKeElBIAFny4-ejZcZO9ieiP17PNoQBU6crHZVV7eqGqEXBHcEk-2rfWd8nHWB5PWUO4oJ7zDrsKAP0Ib0sm_FgMVDtKkAbYctoSfoSc57XGvM6WN0QrlkRBK-QV8-eZviHCcHrtnBpIsPzdXBpViL3IwxNfCrQFhhu0xlSdDEsYGw8wEgrb86Oa9tU3zOC-Sn6NFYt4Jnt-8p-v7u7bfzD-3l5_cfz99ctlZIUdqRE2Fg2_fYYCFHiXEvqRkMcVIYQ4QdHOfOcGy5scLaXsuREWMc40wLDuwUnR11rxczg7MQStKTuk5-1umgovbqbyT4K7WLN4rXeZgNVeDlrUCKP-viRc0-W5gmHSAuWdHqNSNcYlqpr4_UalXOCca7MQSrNRK1V_cjUWskCjNVI6nNz-8vetf6J4NKuDgSquFw4yGpbD0EC84nsEW56P9vztk_MnbywVs9_YAD5H1cUlh7iMpUYfV1PY71NupNYEYoY78BS1e7dw</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>McCain, Megan L</creator><creator>Agarwal, Ashutosh</creator><creator>Nesmith, Haley W</creator><creator>Nesmith, Alexander P</creator><creator>Parker, Kevin Kit</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140701</creationdate><title>Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues</title><author>McCain, Megan L ; Agarwal, Ashutosh ; Nesmith, Haley W ; Nesmith, Alexander P ; Parker, Kevin Kit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-f415be6880b057f700872b9b1d75bb15c9d44db40c4bc5cc8a7f31bbd343a54e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>biochemical pathways</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomimetic Materials - metabolism</topic><topic>cardiomyocytes</topic><topic>Cells, Cultured</topic><topic>collagen</topic><topic>Dentistry</topic><topic>drugs</topic><topic>Elastic Modulus</topic><topic>extracellular matrix</topic><topic>Fibronectins - metabolism</topic><topic>gelatin</topic><topic>Gelatin - chemistry</topic><topic>humans</topic><topic>hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Mechanotransduction</topic><topic>Metabolism</topic><topic>modulus of elasticity</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Organs on chips</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>screening</topic><topic>synthetic products</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCain, Megan L</creatorcontrib><creatorcontrib>Agarwal, Ashutosh</creatorcontrib><creatorcontrib>Nesmith, Haley W</creatorcontrib><creatorcontrib>Nesmith, Alexander P</creatorcontrib><creatorcontrib>Parker, Kevin Kit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCain, Megan L</au><au>Agarwal, Ashutosh</au><au>Nesmith, Haley W</au><au>Nesmith, Alexander P</au><au>Parker, Kevin Kit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>35</volume><issue>21</issue><spage>5462</spage><epage>5471</epage><pages>5462-5471</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro , which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>24731714</pmid><doi>10.1016/j.biomaterials.2014.03.052</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2014-07, Vol.35 (21), p.5462-5471
issn 0142-9612
1878-5905
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4057039
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Animals
biochemical pathways
Biocompatible Materials - chemistry
Biomimetic Materials - metabolism
cardiomyocytes
Cells, Cultured
collagen
Dentistry
drugs
Elastic Modulus
extracellular matrix
Fibronectins - metabolism
gelatin
Gelatin - chemistry
humans
hydrogels
Hydrogels - chemistry
Mechanotransduction
Metabolism
modulus of elasticity
Myocytes, Cardiac - cytology
Myocytes, Cardiac - drug effects
Organs on chips
Rats
Rats, Sprague-Dawley
screening
synthetic products
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromolded%20gelatin%20hydrogels%20for%20extended%20culture%20of%20engineered%20cardiac%20tissues&rft.jtitle=Biomaterials&rft.au=McCain,%20Megan%20L&rft.date=2014-07-01&rft.volume=35&rft.issue=21&rft.spage=5462&rft.epage=5471&rft.pages=5462-5471&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2014.03.052&rft_dat=%3Cproquest_pubme%3E2101314702%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101314702&rft_id=info:pmid/24731714&rft_els_id=1_s2_0_S0142961214003123&rfr_iscdi=true