Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues
Abstract Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro , which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collage...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2014-07, Vol.35 (21), p.5462-5471 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5471 |
---|---|
container_issue | 21 |
container_start_page | 5462 |
container_title | Biomaterials |
container_volume | 35 |
creator | McCain, Megan L Agarwal, Ashutosh Nesmith, Haley W Nesmith, Alexander P Parker, Kevin Kit |
description | Abstract Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro , which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. |
doi_str_mv | 10.1016/j.biomaterials.2014.03.052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4057039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961214003123</els_id><sourcerecordid>2101314702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-f415be6880b057f700872b9b1d75bb15c9d44db40c4bc5cc8a7f31bbd343a54e3</originalsourceid><addsrcrecordid>eNqNUstuFDEQtBCILIFfQCNOXGbwcz3DIRJKeElBIAFny4-ejZcZO9ieiP17PNoQBU6crHZVV7eqGqEXBHcEk-2rfWd8nHWB5PWUO4oJ7zDrsKAP0Ib0sm_FgMVDtKkAbYctoSfoSc57XGvM6WN0QrlkRBK-QV8-eZviHCcHrtnBpIsPzdXBpViL3IwxNfCrQFhhu0xlSdDEsYGw8wEgrb86Oa9tU3zOC-Sn6NFYt4Jnt-8p-v7u7bfzD-3l5_cfz99ctlZIUdqRE2Fg2_fYYCFHiXEvqRkMcVIYQ4QdHOfOcGy5scLaXsuREWMc40wLDuwUnR11rxczg7MQStKTuk5-1umgovbqbyT4K7WLN4rXeZgNVeDlrUCKP-viRc0-W5gmHSAuWdHqNSNcYlqpr4_UalXOCca7MQSrNRK1V_cjUWskCjNVI6nNz-8vetf6J4NKuDgSquFw4yGpbD0EC84nsEW56P9vztk_MnbywVs9_YAD5H1cUlh7iMpUYfV1PY71NupNYEYoY78BS1e7dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101314702</pqid></control><display><type>article</type><title>Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>McCain, Megan L ; Agarwal, Ashutosh ; Nesmith, Haley W ; Nesmith, Alexander P ; Parker, Kevin Kit</creator><creatorcontrib>McCain, Megan L ; Agarwal, Ashutosh ; Nesmith, Haley W ; Nesmith, Alexander P ; Parker, Kevin Kit</creatorcontrib><description>Abstract Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro , which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2014.03.052</identifier><identifier>PMID: 24731714</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; biochemical pathways ; Biocompatible Materials - chemistry ; Biomimetic Materials - metabolism ; cardiomyocytes ; Cells, Cultured ; collagen ; Dentistry ; drugs ; Elastic Modulus ; extracellular matrix ; Fibronectins - metabolism ; gelatin ; Gelatin - chemistry ; humans ; hydrogels ; Hydrogels - chemistry ; Mechanotransduction ; Metabolism ; modulus of elasticity ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - drug effects ; Organs on chips ; Rats ; Rats, Sprague-Dawley ; screening ; synthetic products ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Biomaterials, 2014-07, Vol.35 (21), p.5462-5471</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>2014 Elsevier Ltd. All rights reserved. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-f415be6880b057f700872b9b1d75bb15c9d44db40c4bc5cc8a7f31bbd343a54e3</citedby><cites>FETCH-LOGICAL-c575t-f415be6880b057f700872b9b1d75bb15c9d44db40c4bc5cc8a7f31bbd343a54e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2014.03.052$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24731714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCain, Megan L</creatorcontrib><creatorcontrib>Agarwal, Ashutosh</creatorcontrib><creatorcontrib>Nesmith, Haley W</creatorcontrib><creatorcontrib>Nesmith, Alexander P</creatorcontrib><creatorcontrib>Parker, Kevin Kit</creatorcontrib><title>Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro , which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>biochemical pathways</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomimetic Materials - metabolism</subject><subject>cardiomyocytes</subject><subject>Cells, Cultured</subject><subject>collagen</subject><subject>Dentistry</subject><subject>drugs</subject><subject>Elastic Modulus</subject><subject>extracellular matrix</subject><subject>Fibronectins - metabolism</subject><subject>gelatin</subject><subject>Gelatin - chemistry</subject><subject>humans</subject><subject>hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Mechanotransduction</subject><subject>Metabolism</subject><subject>modulus of elasticity</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - drug effects</subject><subject>Organs on chips</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>screening</subject><subject>synthetic products</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUstuFDEQtBCILIFfQCNOXGbwcz3DIRJKeElBIAFny4-ejZcZO9ieiP17PNoQBU6crHZVV7eqGqEXBHcEk-2rfWd8nHWB5PWUO4oJ7zDrsKAP0Ib0sm_FgMVDtKkAbYctoSfoSc57XGvM6WN0QrlkRBK-QV8-eZviHCcHrtnBpIsPzdXBpViL3IwxNfCrQFhhu0xlSdDEsYGw8wEgrb86Oa9tU3zOC-Sn6NFYt4Jnt-8p-v7u7bfzD-3l5_cfz99ctlZIUdqRE2Fg2_fYYCFHiXEvqRkMcVIYQ4QdHOfOcGy5scLaXsuREWMc40wLDuwUnR11rxczg7MQStKTuk5-1umgovbqbyT4K7WLN4rXeZgNVeDlrUCKP-viRc0-W5gmHSAuWdHqNSNcYlqpr4_UalXOCca7MQSrNRK1V_cjUWskCjNVI6nNz-8vetf6J4NKuDgSquFw4yGpbD0EC84nsEW56P9vztk_MnbywVs9_YAD5H1cUlh7iMpUYfV1PY71NupNYEYoY78BS1e7dw</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>McCain, Megan L</creator><creator>Agarwal, Ashutosh</creator><creator>Nesmith, Haley W</creator><creator>Nesmith, Alexander P</creator><creator>Parker, Kevin Kit</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140701</creationdate><title>Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues</title><author>McCain, Megan L ; Agarwal, Ashutosh ; Nesmith, Haley W ; Nesmith, Alexander P ; Parker, Kevin Kit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-f415be6880b057f700872b9b1d75bb15c9d44db40c4bc5cc8a7f31bbd343a54e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>biochemical pathways</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomimetic Materials - metabolism</topic><topic>cardiomyocytes</topic><topic>Cells, Cultured</topic><topic>collagen</topic><topic>Dentistry</topic><topic>drugs</topic><topic>Elastic Modulus</topic><topic>extracellular matrix</topic><topic>Fibronectins - metabolism</topic><topic>gelatin</topic><topic>Gelatin - chemistry</topic><topic>humans</topic><topic>hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Mechanotransduction</topic><topic>Metabolism</topic><topic>modulus of elasticity</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - drug effects</topic><topic>Organs on chips</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>screening</topic><topic>synthetic products</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCain, Megan L</creatorcontrib><creatorcontrib>Agarwal, Ashutosh</creatorcontrib><creatorcontrib>Nesmith, Haley W</creatorcontrib><creatorcontrib>Nesmith, Alexander P</creatorcontrib><creatorcontrib>Parker, Kevin Kit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCain, Megan L</au><au>Agarwal, Ashutosh</au><au>Nesmith, Haley W</au><au>Nesmith, Alexander P</au><au>Parker, Kevin Kit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2014-07-01</date><risdate>2014</risdate><volume>35</volume><issue>21</issue><spage>5462</spage><epage>5471</epage><pages>5462-5471</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro , which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>24731714</pmid><doi>10.1016/j.biomaterials.2014.03.052</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2014-07, Vol.35 (21), p.5462-5471 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4057039 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Advanced Basic Science Animals biochemical pathways Biocompatible Materials - chemistry Biomimetic Materials - metabolism cardiomyocytes Cells, Cultured collagen Dentistry drugs Elastic Modulus extracellular matrix Fibronectins - metabolism gelatin Gelatin - chemistry humans hydrogels Hydrogels - chemistry Mechanotransduction Metabolism modulus of elasticity Myocytes, Cardiac - cytology Myocytes, Cardiac - drug effects Organs on chips Rats Rats, Sprague-Dawley screening synthetic products Tissue engineering Tissue Engineering - methods Tissue Scaffolds - chemistry |
title | Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromolded%20gelatin%20hydrogels%20for%20extended%20culture%20of%20engineered%20cardiac%20tissues&rft.jtitle=Biomaterials&rft.au=McCain,%20Megan%20L&rft.date=2014-07-01&rft.volume=35&rft.issue=21&rft.spage=5462&rft.epage=5471&rft.pages=5462-5471&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2014.03.052&rft_dat=%3Cproquest_pubme%3E2101314702%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101314702&rft_id=info:pmid/24731714&rft_els_id=1_s2_0_S0142961214003123&rfr_iscdi=true |