Joint spatial modeling to identify shared patterns among chronic related potentially preventable hospitalizations
Rates of Potentially Preventable Hospitalizations (PPH) are used to evaluate access of territorially delimited populations to high quality ambulatory care. A common geographic pattern of several PPH would reflect the performance of healthcare providers. This study is aimed at modeling jointly the ge...
Gespeichert in:
Veröffentlicht in: | BMC medical research methodology 2014-06, Vol.14 (1), p.74-74, Article 74 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 74 |
container_title | BMC medical research methodology |
container_volume | 14 |
creator | Ibañez-Beroiz, Berta Librero, Julián Bernal-Delgado, Enrique García-Armesto, Sandra Villanueva-Ferragud, Silvia Peiró, Salvador |
description | Rates of Potentially Preventable Hospitalizations (PPH) are used to evaluate access of territorially delimited populations to high quality ambulatory care. A common geographic pattern of several PPH would reflect the performance of healthcare providers. This study is aimed at modeling jointly the geographical variation in six chronic PPH conditions in one Spanish Autonomous Community for describing common and discrepant patterns, and to assess the relative weight of the common pattern on each condition.
Data on the 39,970 PPH hospital admissions for diabetes short term complications, chronic obstructive pulmonary disease (COPD), congestive heart failure, dehydration, angina admission and adult asthma, between 2007 and 2009 were extracted from the Hospital Discharge Administrative Databases and assigned to one of the 240 Basic Health Zones. Rates and Standardized Hospitalization Ratios per geographic unit were estimated. The spatial analysis was carried out jointly for PPH conditions using Shared Component Models (SCM).
The component shared by the six PPH conditions explained about the 36% of the variability of each PPH condition, ranging from the 25.9 for dehydration to 58.7 for COPD. The geographical pattern found in the latent common component identifies territorial clusters with particularly high risk. The specific risk pattern that each isolated PPH does not share with the common pattern for all six conditions show many non-significant areas for most PPH, but with some exceptions.
The geographical distribution of the risk of the PPH conditions is captured in a 36% by a unique latent pattern. The SCM modeling may be useful to evaluate healthcare system performance. |
doi_str_mv | 10.1186/1471-2288-14-74 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4053553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539572059</galeid><sourcerecordid>A539572059</sourcerecordid><originalsourceid>FETCH-LOGICAL-b519t-b499dfe2d0057438356d984fe5ec8147463b02febbafd1ad9e47edebb00424793</originalsourceid><addsrcrecordid>eNp1Uk1r3DAQFaWlSbc991YEvfTiRLIkW74UktBPArkkZyFb410VWXIkbWD76yuzyZKFFB00H2_evBkGoY-UnFEqm3PKW1rVtZQV5VXLX6HTQ-T1M_sEvUvpDyG0lax5i05qLruupvwU3f8O1mecZp2tdngKBpz1a5wDtgZ8tuMOp42OYHCBZIg-YT2Fghg2MXg74AhO5yUd8oLXzu3wHOGhOLp3gDchzTZrZ_-WFsGn9-jNqF2CD4__Ct19_3Z79bO6vvnx6-riuuoF7XLV864zI9SGENFyJploTCf5CAIGWQbjDetJPULf69FQbTrgLZjiEsJr3nZshb7ueedtP4EZip6onZqjnXTcqaCtOs54u1Hr8KA4EUwIVggu9wS9Df8hOM4MYVLLytWy8mKponuFvjyqiOF-CymryaYBnNMewjYpWno1teSsKdDPe-haO1DWj6GwDgtcXQjWibYmYhnr7AVUeQYmOwQPoy3xo4LzfcEQQ0oRxsMElKjliF7Q_On55g74p6th_wBxosXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535628436</pqid></control><display><type>article</type><title>Joint spatial modeling to identify shared patterns among chronic related potentially preventable hospitalizations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ibañez-Beroiz, Berta ; Librero, Julián ; Bernal-Delgado, Enrique ; García-Armesto, Sandra ; Villanueva-Ferragud, Silvia ; Peiró, Salvador</creator><creatorcontrib>Ibañez-Beroiz, Berta ; Librero, Julián ; Bernal-Delgado, Enrique ; García-Armesto, Sandra ; Villanueva-Ferragud, Silvia ; Peiró, Salvador</creatorcontrib><description>Rates of Potentially Preventable Hospitalizations (PPH) are used to evaluate access of territorially delimited populations to high quality ambulatory care. A common geographic pattern of several PPH would reflect the performance of healthcare providers. This study is aimed at modeling jointly the geographical variation in six chronic PPH conditions in one Spanish Autonomous Community for describing common and discrepant patterns, and to assess the relative weight of the common pattern on each condition.
Data on the 39,970 PPH hospital admissions for diabetes short term complications, chronic obstructive pulmonary disease (COPD), congestive heart failure, dehydration, angina admission and adult asthma, between 2007 and 2009 were extracted from the Hospital Discharge Administrative Databases and assigned to one of the 240 Basic Health Zones. Rates and Standardized Hospitalization Ratios per geographic unit were estimated. The spatial analysis was carried out jointly for PPH conditions using Shared Component Models (SCM).
The component shared by the six PPH conditions explained about the 36% of the variability of each PPH condition, ranging from the 25.9 for dehydration to 58.7 for COPD. The geographical pattern found in the latent common component identifies territorial clusters with particularly high risk. The specific risk pattern that each isolated PPH does not share with the common pattern for all six conditions show many non-significant areas for most PPH, but with some exceptions.
The geographical distribution of the risk of the PPH conditions is captured in a 36% by a unique latent pattern. The SCM modeling may be useful to evaluate healthcare system performance.</description><identifier>ISSN: 1471-2288</identifier><identifier>EISSN: 1471-2288</identifier><identifier>DOI: 10.1186/1471-2288-14-74</identifier><identifier>PMID: 24899214</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Ambulatory Care ; Analysis ; Angina Pectoris - therapy ; Asthma - therapy ; Dehydration - therapy ; Delivery of Health Care ; Diabetes Complications - therapy ; Geographic information systems ; Geography ; Health care industry ; Heart Failure - therapy ; Hospitalization - statistics & numerical data ; Humans ; Pulmonary Disease, Chronic Obstructive - therapy ; Quality management ; Residence Characteristics ; Spain ; Treatment Outcome</subject><ispartof>BMC medical research methodology, 2014-06, Vol.14 (1), p.74-74, Article 74</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>Copyright © 2014 Ibañez-Beroiz et al.; licensee BioMed Central Ltd. 2014 Ibañez-Beroiz et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b519t-b499dfe2d0057438356d984fe5ec8147463b02febbafd1ad9e47edebb00424793</citedby><cites>FETCH-LOGICAL-b519t-b499dfe2d0057438356d984fe5ec8147463b02febbafd1ad9e47edebb00424793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053553/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053553/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24899214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ibañez-Beroiz, Berta</creatorcontrib><creatorcontrib>Librero, Julián</creatorcontrib><creatorcontrib>Bernal-Delgado, Enrique</creatorcontrib><creatorcontrib>García-Armesto, Sandra</creatorcontrib><creatorcontrib>Villanueva-Ferragud, Silvia</creatorcontrib><creatorcontrib>Peiró, Salvador</creatorcontrib><title>Joint spatial modeling to identify shared patterns among chronic related potentially preventable hospitalizations</title><title>BMC medical research methodology</title><addtitle>BMC Med Res Methodol</addtitle><description>Rates of Potentially Preventable Hospitalizations (PPH) are used to evaluate access of territorially delimited populations to high quality ambulatory care. A common geographic pattern of several PPH would reflect the performance of healthcare providers. This study is aimed at modeling jointly the geographical variation in six chronic PPH conditions in one Spanish Autonomous Community for describing common and discrepant patterns, and to assess the relative weight of the common pattern on each condition.
Data on the 39,970 PPH hospital admissions for diabetes short term complications, chronic obstructive pulmonary disease (COPD), congestive heart failure, dehydration, angina admission and adult asthma, between 2007 and 2009 were extracted from the Hospital Discharge Administrative Databases and assigned to one of the 240 Basic Health Zones. Rates and Standardized Hospitalization Ratios per geographic unit were estimated. The spatial analysis was carried out jointly for PPH conditions using Shared Component Models (SCM).
The component shared by the six PPH conditions explained about the 36% of the variability of each PPH condition, ranging from the 25.9 for dehydration to 58.7 for COPD. The geographical pattern found in the latent common component identifies territorial clusters with particularly high risk. The specific risk pattern that each isolated PPH does not share with the common pattern for all six conditions show many non-significant areas for most PPH, but with some exceptions.
The geographical distribution of the risk of the PPH conditions is captured in a 36% by a unique latent pattern. The SCM modeling may be useful to evaluate healthcare system performance.</description><subject>Ambulatory Care</subject><subject>Analysis</subject><subject>Angina Pectoris - therapy</subject><subject>Asthma - therapy</subject><subject>Dehydration - therapy</subject><subject>Delivery of Health Care</subject><subject>Diabetes Complications - therapy</subject><subject>Geographic information systems</subject><subject>Geography</subject><subject>Health care industry</subject><subject>Heart Failure - therapy</subject><subject>Hospitalization - statistics & numerical data</subject><subject>Humans</subject><subject>Pulmonary Disease, Chronic Obstructive - therapy</subject><subject>Quality management</subject><subject>Residence Characteristics</subject><subject>Spain</subject><subject>Treatment Outcome</subject><issn>1471-2288</issn><issn>1471-2288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1Uk1r3DAQFaWlSbc991YEvfTiRLIkW74UktBPArkkZyFb410VWXIkbWD76yuzyZKFFB00H2_evBkGoY-UnFEqm3PKW1rVtZQV5VXLX6HTQ-T1M_sEvUvpDyG0lax5i05qLruupvwU3f8O1mecZp2tdngKBpz1a5wDtgZ8tuMOp42OYHCBZIg-YT2Fghg2MXg74AhO5yUd8oLXzu3wHOGhOLp3gDchzTZrZ_-WFsGn9-jNqF2CD4__Ct19_3Z79bO6vvnx6-riuuoF7XLV864zI9SGENFyJploTCf5CAIGWQbjDetJPULf69FQbTrgLZjiEsJr3nZshb7ueedtP4EZip6onZqjnXTcqaCtOs54u1Hr8KA4EUwIVggu9wS9Df8hOM4MYVLLytWy8mKponuFvjyqiOF-CymryaYBnNMewjYpWno1teSsKdDPe-haO1DWj6GwDgtcXQjWibYmYhnr7AVUeQYmOwQPoy3xo4LzfcEQQ0oRxsMElKjliF7Q_On55g74p6th_wBxosXM</recordid><startdate>20140604</startdate><enddate>20140604</enddate><creator>Ibañez-Beroiz, Berta</creator><creator>Librero, Julián</creator><creator>Bernal-Delgado, Enrique</creator><creator>García-Armesto, Sandra</creator><creator>Villanueva-Ferragud, Silvia</creator><creator>Peiró, Salvador</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140604</creationdate><title>Joint spatial modeling to identify shared patterns among chronic related potentially preventable hospitalizations</title><author>Ibañez-Beroiz, Berta ; Librero, Julián ; Bernal-Delgado, Enrique ; García-Armesto, Sandra ; Villanueva-Ferragud, Silvia ; Peiró, Salvador</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b519t-b499dfe2d0057438356d984fe5ec8147463b02febbafd1ad9e47edebb00424793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ambulatory Care</topic><topic>Analysis</topic><topic>Angina Pectoris - therapy</topic><topic>Asthma - therapy</topic><topic>Dehydration - therapy</topic><topic>Delivery of Health Care</topic><topic>Diabetes Complications - therapy</topic><topic>Geographic information systems</topic><topic>Geography</topic><topic>Health care industry</topic><topic>Heart Failure - therapy</topic><topic>Hospitalization - statistics & numerical data</topic><topic>Humans</topic><topic>Pulmonary Disease, Chronic Obstructive - therapy</topic><topic>Quality management</topic><topic>Residence Characteristics</topic><topic>Spain</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibañez-Beroiz, Berta</creatorcontrib><creatorcontrib>Librero, Julián</creatorcontrib><creatorcontrib>Bernal-Delgado, Enrique</creatorcontrib><creatorcontrib>García-Armesto, Sandra</creatorcontrib><creatorcontrib>Villanueva-Ferragud, Silvia</creatorcontrib><creatorcontrib>Peiró, Salvador</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC medical research methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibañez-Beroiz, Berta</au><au>Librero, Julián</au><au>Bernal-Delgado, Enrique</au><au>García-Armesto, Sandra</au><au>Villanueva-Ferragud, Silvia</au><au>Peiró, Salvador</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint spatial modeling to identify shared patterns among chronic related potentially preventable hospitalizations</atitle><jtitle>BMC medical research methodology</jtitle><addtitle>BMC Med Res Methodol</addtitle><date>2014-06-04</date><risdate>2014</risdate><volume>14</volume><issue>1</issue><spage>74</spage><epage>74</epage><pages>74-74</pages><artnum>74</artnum><issn>1471-2288</issn><eissn>1471-2288</eissn><abstract>Rates of Potentially Preventable Hospitalizations (PPH) are used to evaluate access of territorially delimited populations to high quality ambulatory care. A common geographic pattern of several PPH would reflect the performance of healthcare providers. This study is aimed at modeling jointly the geographical variation in six chronic PPH conditions in one Spanish Autonomous Community for describing common and discrepant patterns, and to assess the relative weight of the common pattern on each condition.
Data on the 39,970 PPH hospital admissions for diabetes short term complications, chronic obstructive pulmonary disease (COPD), congestive heart failure, dehydration, angina admission and adult asthma, between 2007 and 2009 were extracted from the Hospital Discharge Administrative Databases and assigned to one of the 240 Basic Health Zones. Rates and Standardized Hospitalization Ratios per geographic unit were estimated. The spatial analysis was carried out jointly for PPH conditions using Shared Component Models (SCM).
The component shared by the six PPH conditions explained about the 36% of the variability of each PPH condition, ranging from the 25.9 for dehydration to 58.7 for COPD. The geographical pattern found in the latent common component identifies territorial clusters with particularly high risk. The specific risk pattern that each isolated PPH does not share with the common pattern for all six conditions show many non-significant areas for most PPH, but with some exceptions.
The geographical distribution of the risk of the PPH conditions is captured in a 36% by a unique latent pattern. The SCM modeling may be useful to evaluate healthcare system performance.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24899214</pmid><doi>10.1186/1471-2288-14-74</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2288 |
ispartof | BMC medical research methodology, 2014-06, Vol.14 (1), p.74-74, Article 74 |
issn | 1471-2288 1471-2288 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4053553 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SpringerNature Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Ambulatory Care Analysis Angina Pectoris - therapy Asthma - therapy Dehydration - therapy Delivery of Health Care Diabetes Complications - therapy Geographic information systems Geography Health care industry Heart Failure - therapy Hospitalization - statistics & numerical data Humans Pulmonary Disease, Chronic Obstructive - therapy Quality management Residence Characteristics Spain Treatment Outcome |
title | Joint spatial modeling to identify shared patterns among chronic related potentially preventable hospitalizations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20spatial%20modeling%20to%20identify%20shared%20patterns%20among%20chronic%20related%20potentially%20preventable%20hospitalizations&rft.jtitle=BMC%20medical%20research%20methodology&rft.au=Iba%C3%B1ez-Beroiz,%20Berta&rft.date=2014-06-04&rft.volume=14&rft.issue=1&rft.spage=74&rft.epage=74&rft.pages=74-74&rft.artnum=74&rft.issn=1471-2288&rft.eissn=1471-2288&rft_id=info:doi/10.1186/1471-2288-14-74&rft_dat=%3Cgale_pubme%3EA539572059%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535628436&rft_id=info:pmid/24899214&rft_galeid=A539572059&rfr_iscdi=true |