Joint spatial modeling to identify shared patterns among chronic related potentially preventable hospitalizations

Rates of Potentially Preventable Hospitalizations (PPH) are used to evaluate access of territorially delimited populations to high quality ambulatory care. A common geographic pattern of several PPH would reflect the performance of healthcare providers. This study is aimed at modeling jointly the ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC medical research methodology 2014-06, Vol.14 (1), p.74-74, Article 74
Hauptverfasser: Ibañez-Beroiz, Berta, Librero, Julián, Bernal-Delgado, Enrique, García-Armesto, Sandra, Villanueva-Ferragud, Silvia, Peiró, Salvador
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 1
container_start_page 74
container_title BMC medical research methodology
container_volume 14
creator Ibañez-Beroiz, Berta
Librero, Julián
Bernal-Delgado, Enrique
García-Armesto, Sandra
Villanueva-Ferragud, Silvia
Peiró, Salvador
description Rates of Potentially Preventable Hospitalizations (PPH) are used to evaluate access of territorially delimited populations to high quality ambulatory care. A common geographic pattern of several PPH would reflect the performance of healthcare providers. This study is aimed at modeling jointly the geographical variation in six chronic PPH conditions in one Spanish Autonomous Community for describing common and discrepant patterns, and to assess the relative weight of the common pattern on each condition. Data on the 39,970 PPH hospital admissions for diabetes short term complications, chronic obstructive pulmonary disease (COPD), congestive heart failure, dehydration, angina admission and adult asthma, between 2007 and 2009 were extracted from the Hospital Discharge Administrative Databases and assigned to one of the 240 Basic Health Zones. Rates and Standardized Hospitalization Ratios per geographic unit were estimated. The spatial analysis was carried out jointly for PPH conditions using Shared Component Models (SCM). The component shared by the six PPH conditions explained about the 36% of the variability of each PPH condition, ranging from the 25.9 for dehydration to 58.7 for COPD. The geographical pattern found in the latent common component identifies territorial clusters with particularly high risk. The specific risk pattern that each isolated PPH does not share with the common pattern for all six conditions show many non-significant areas for most PPH, but with some exceptions. The geographical distribution of the risk of the PPH conditions is captured in a 36% by a unique latent pattern. The SCM modeling may be useful to evaluate healthcare system performance.
doi_str_mv 10.1186/1471-2288-14-74
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4053553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539572059</galeid><sourcerecordid>A539572059</sourcerecordid><originalsourceid>FETCH-LOGICAL-b519t-b499dfe2d0057438356d984fe5ec8147463b02febbafd1ad9e47edebb00424793</originalsourceid><addsrcrecordid>eNp1Uk1r3DAQFaWlSbc991YEvfTiRLIkW74UktBPArkkZyFb410VWXIkbWD76yuzyZKFFB00H2_evBkGoY-UnFEqm3PKW1rVtZQV5VXLX6HTQ-T1M_sEvUvpDyG0lax5i05qLruupvwU3f8O1mecZp2tdngKBpz1a5wDtgZ8tuMOp42OYHCBZIg-YT2Fghg2MXg74AhO5yUd8oLXzu3wHOGhOLp3gDchzTZrZ_-WFsGn9-jNqF2CD4__Ct19_3Z79bO6vvnx6-riuuoF7XLV864zI9SGENFyJploTCf5CAIGWQbjDetJPULf69FQbTrgLZjiEsJr3nZshb7ueedtP4EZip6onZqjnXTcqaCtOs54u1Hr8KA4EUwIVggu9wS9Df8hOM4MYVLLytWy8mKponuFvjyqiOF-CymryaYBnNMewjYpWno1teSsKdDPe-haO1DWj6GwDgtcXQjWibYmYhnr7AVUeQYmOwQPoy3xo4LzfcEQQ0oRxsMElKjliF7Q_On55g74p6th_wBxosXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535628436</pqid></control><display><type>article</type><title>Joint spatial modeling to identify shared patterns among chronic related potentially preventable hospitalizations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ibañez-Beroiz, Berta ; Librero, Julián ; Bernal-Delgado, Enrique ; García-Armesto, Sandra ; Villanueva-Ferragud, Silvia ; Peiró, Salvador</creator><creatorcontrib>Ibañez-Beroiz, Berta ; Librero, Julián ; Bernal-Delgado, Enrique ; García-Armesto, Sandra ; Villanueva-Ferragud, Silvia ; Peiró, Salvador</creatorcontrib><description>Rates of Potentially Preventable Hospitalizations (PPH) are used to evaluate access of territorially delimited populations to high quality ambulatory care. A common geographic pattern of several PPH would reflect the performance of healthcare providers. This study is aimed at modeling jointly the geographical variation in six chronic PPH conditions in one Spanish Autonomous Community for describing common and discrepant patterns, and to assess the relative weight of the common pattern on each condition. Data on the 39,970 PPH hospital admissions for diabetes short term complications, chronic obstructive pulmonary disease (COPD), congestive heart failure, dehydration, angina admission and adult asthma, between 2007 and 2009 were extracted from the Hospital Discharge Administrative Databases and assigned to one of the 240 Basic Health Zones. Rates and Standardized Hospitalization Ratios per geographic unit were estimated. The spatial analysis was carried out jointly for PPH conditions using Shared Component Models (SCM). The component shared by the six PPH conditions explained about the 36% of the variability of each PPH condition, ranging from the 25.9 for dehydration to 58.7 for COPD. The geographical pattern found in the latent common component identifies territorial clusters with particularly high risk. The specific risk pattern that each isolated PPH does not share with the common pattern for all six conditions show many non-significant areas for most PPH, but with some exceptions. The geographical distribution of the risk of the PPH conditions is captured in a 36% by a unique latent pattern. The SCM modeling may be useful to evaluate healthcare system performance.</description><identifier>ISSN: 1471-2288</identifier><identifier>EISSN: 1471-2288</identifier><identifier>DOI: 10.1186/1471-2288-14-74</identifier><identifier>PMID: 24899214</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Ambulatory Care ; Analysis ; Angina Pectoris - therapy ; Asthma - therapy ; Dehydration - therapy ; Delivery of Health Care ; Diabetes Complications - therapy ; Geographic information systems ; Geography ; Health care industry ; Heart Failure - therapy ; Hospitalization - statistics &amp; numerical data ; Humans ; Pulmonary Disease, Chronic Obstructive - therapy ; Quality management ; Residence Characteristics ; Spain ; Treatment Outcome</subject><ispartof>BMC medical research methodology, 2014-06, Vol.14 (1), p.74-74, Article 74</ispartof><rights>COPYRIGHT 2014 BioMed Central Ltd.</rights><rights>Copyright © 2014 Ibañez-Beroiz et al.; licensee BioMed Central Ltd. 2014 Ibañez-Beroiz et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b519t-b499dfe2d0057438356d984fe5ec8147463b02febbafd1ad9e47edebb00424793</citedby><cites>FETCH-LOGICAL-b519t-b499dfe2d0057438356d984fe5ec8147463b02febbafd1ad9e47edebb00424793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053553/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053553/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24899214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ibañez-Beroiz, Berta</creatorcontrib><creatorcontrib>Librero, Julián</creatorcontrib><creatorcontrib>Bernal-Delgado, Enrique</creatorcontrib><creatorcontrib>García-Armesto, Sandra</creatorcontrib><creatorcontrib>Villanueva-Ferragud, Silvia</creatorcontrib><creatorcontrib>Peiró, Salvador</creatorcontrib><title>Joint spatial modeling to identify shared patterns among chronic related potentially preventable hospitalizations</title><title>BMC medical research methodology</title><addtitle>BMC Med Res Methodol</addtitle><description>Rates of Potentially Preventable Hospitalizations (PPH) are used to evaluate access of territorially delimited populations to high quality ambulatory care. A common geographic pattern of several PPH would reflect the performance of healthcare providers. This study is aimed at modeling jointly the geographical variation in six chronic PPH conditions in one Spanish Autonomous Community for describing common and discrepant patterns, and to assess the relative weight of the common pattern on each condition. Data on the 39,970 PPH hospital admissions for diabetes short term complications, chronic obstructive pulmonary disease (COPD), congestive heart failure, dehydration, angina admission and adult asthma, between 2007 and 2009 were extracted from the Hospital Discharge Administrative Databases and assigned to one of the 240 Basic Health Zones. Rates and Standardized Hospitalization Ratios per geographic unit were estimated. The spatial analysis was carried out jointly for PPH conditions using Shared Component Models (SCM). The component shared by the six PPH conditions explained about the 36% of the variability of each PPH condition, ranging from the 25.9 for dehydration to 58.7 for COPD. The geographical pattern found in the latent common component identifies territorial clusters with particularly high risk. The specific risk pattern that each isolated PPH does not share with the common pattern for all six conditions show many non-significant areas for most PPH, but with some exceptions. The geographical distribution of the risk of the PPH conditions is captured in a 36% by a unique latent pattern. The SCM modeling may be useful to evaluate healthcare system performance.</description><subject>Ambulatory Care</subject><subject>Analysis</subject><subject>Angina Pectoris - therapy</subject><subject>Asthma - therapy</subject><subject>Dehydration - therapy</subject><subject>Delivery of Health Care</subject><subject>Diabetes Complications - therapy</subject><subject>Geographic information systems</subject><subject>Geography</subject><subject>Health care industry</subject><subject>Heart Failure - therapy</subject><subject>Hospitalization - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Pulmonary Disease, Chronic Obstructive - therapy</subject><subject>Quality management</subject><subject>Residence Characteristics</subject><subject>Spain</subject><subject>Treatment Outcome</subject><issn>1471-2288</issn><issn>1471-2288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1Uk1r3DAQFaWlSbc991YEvfTiRLIkW74UktBPArkkZyFb410VWXIkbWD76yuzyZKFFB00H2_evBkGoY-UnFEqm3PKW1rVtZQV5VXLX6HTQ-T1M_sEvUvpDyG0lax5i05qLruupvwU3f8O1mecZp2tdngKBpz1a5wDtgZ8tuMOp42OYHCBZIg-YT2Fghg2MXg74AhO5yUd8oLXzu3wHOGhOLp3gDchzTZrZ_-WFsGn9-jNqF2CD4__Ct19_3Z79bO6vvnx6-riuuoF7XLV864zI9SGENFyJploTCf5CAIGWQbjDetJPULf69FQbTrgLZjiEsJr3nZshb7ueedtP4EZip6onZqjnXTcqaCtOs54u1Hr8KA4EUwIVggu9wS9Df8hOM4MYVLLytWy8mKponuFvjyqiOF-CymryaYBnNMewjYpWno1teSsKdDPe-haO1DWj6GwDgtcXQjWibYmYhnr7AVUeQYmOwQPoy3xo4LzfcEQQ0oRxsMElKjliF7Q_On55g74p6th_wBxosXM</recordid><startdate>20140604</startdate><enddate>20140604</enddate><creator>Ibañez-Beroiz, Berta</creator><creator>Librero, Julián</creator><creator>Bernal-Delgado, Enrique</creator><creator>García-Armesto, Sandra</creator><creator>Villanueva-Ferragud, Silvia</creator><creator>Peiró, Salvador</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140604</creationdate><title>Joint spatial modeling to identify shared patterns among chronic related potentially preventable hospitalizations</title><author>Ibañez-Beroiz, Berta ; Librero, Julián ; Bernal-Delgado, Enrique ; García-Armesto, Sandra ; Villanueva-Ferragud, Silvia ; Peiró, Salvador</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b519t-b499dfe2d0057438356d984fe5ec8147463b02febbafd1ad9e47edebb00424793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ambulatory Care</topic><topic>Analysis</topic><topic>Angina Pectoris - therapy</topic><topic>Asthma - therapy</topic><topic>Dehydration - therapy</topic><topic>Delivery of Health Care</topic><topic>Diabetes Complications - therapy</topic><topic>Geographic information systems</topic><topic>Geography</topic><topic>Health care industry</topic><topic>Heart Failure - therapy</topic><topic>Hospitalization - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Pulmonary Disease, Chronic Obstructive - therapy</topic><topic>Quality management</topic><topic>Residence Characteristics</topic><topic>Spain</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ibañez-Beroiz, Berta</creatorcontrib><creatorcontrib>Librero, Julián</creatorcontrib><creatorcontrib>Bernal-Delgado, Enrique</creatorcontrib><creatorcontrib>García-Armesto, Sandra</creatorcontrib><creatorcontrib>Villanueva-Ferragud, Silvia</creatorcontrib><creatorcontrib>Peiró, Salvador</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC medical research methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ibañez-Beroiz, Berta</au><au>Librero, Julián</au><au>Bernal-Delgado, Enrique</au><au>García-Armesto, Sandra</au><au>Villanueva-Ferragud, Silvia</au><au>Peiró, Salvador</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint spatial modeling to identify shared patterns among chronic related potentially preventable hospitalizations</atitle><jtitle>BMC medical research methodology</jtitle><addtitle>BMC Med Res Methodol</addtitle><date>2014-06-04</date><risdate>2014</risdate><volume>14</volume><issue>1</issue><spage>74</spage><epage>74</epage><pages>74-74</pages><artnum>74</artnum><issn>1471-2288</issn><eissn>1471-2288</eissn><abstract>Rates of Potentially Preventable Hospitalizations (PPH) are used to evaluate access of territorially delimited populations to high quality ambulatory care. A common geographic pattern of several PPH would reflect the performance of healthcare providers. This study is aimed at modeling jointly the geographical variation in six chronic PPH conditions in one Spanish Autonomous Community for describing common and discrepant patterns, and to assess the relative weight of the common pattern on each condition. Data on the 39,970 PPH hospital admissions for diabetes short term complications, chronic obstructive pulmonary disease (COPD), congestive heart failure, dehydration, angina admission and adult asthma, between 2007 and 2009 were extracted from the Hospital Discharge Administrative Databases and assigned to one of the 240 Basic Health Zones. Rates and Standardized Hospitalization Ratios per geographic unit were estimated. The spatial analysis was carried out jointly for PPH conditions using Shared Component Models (SCM). The component shared by the six PPH conditions explained about the 36% of the variability of each PPH condition, ranging from the 25.9 for dehydration to 58.7 for COPD. The geographical pattern found in the latent common component identifies territorial clusters with particularly high risk. The specific risk pattern that each isolated PPH does not share with the common pattern for all six conditions show many non-significant areas for most PPH, but with some exceptions. The geographical distribution of the risk of the PPH conditions is captured in a 36% by a unique latent pattern. The SCM modeling may be useful to evaluate healthcare system performance.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24899214</pmid><doi>10.1186/1471-2288-14-74</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2288
ispartof BMC medical research methodology, 2014-06, Vol.14 (1), p.74-74, Article 74
issn 1471-2288
1471-2288
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4053553
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerNature Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Ambulatory Care
Analysis
Angina Pectoris - therapy
Asthma - therapy
Dehydration - therapy
Delivery of Health Care
Diabetes Complications - therapy
Geographic information systems
Geography
Health care industry
Heart Failure - therapy
Hospitalization - statistics & numerical data
Humans
Pulmonary Disease, Chronic Obstructive - therapy
Quality management
Residence Characteristics
Spain
Treatment Outcome
title Joint spatial modeling to identify shared patterns among chronic related potentially preventable hospitalizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T09%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20spatial%20modeling%20to%20identify%20shared%20patterns%20among%20chronic%20related%20potentially%20preventable%20hospitalizations&rft.jtitle=BMC%20medical%20research%20methodology&rft.au=Iba%C3%B1ez-Beroiz,%20Berta&rft.date=2014-06-04&rft.volume=14&rft.issue=1&rft.spage=74&rft.epage=74&rft.pages=74-74&rft.artnum=74&rft.issn=1471-2288&rft.eissn=1471-2288&rft_id=info:doi/10.1186/1471-2288-14-74&rft_dat=%3Cgale_pubme%3EA539572059%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535628436&rft_id=info:pmid/24899214&rft_galeid=A539572059&rfr_iscdi=true