Autocrine A2 in the T-System of Ventricular Myocytes Creates Transmural Gradients in Ion Transport: A Mechanism to Match Contraction with Load?

Transmural heterogeneities in Na/K pump current (IP), transient outward K+-current (Ito), and Ca2+-current (ICaL) play an important role in regulating electrical and contractile activities in the ventricular myocardium. Prior studies indicated angiotensin II (A2) may determine the transmural gradien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2014-06, Vol.106 (11), p.2364-2374
Hauptverfasser: Gao, Junyuan, Sun, Xiurong, Potapova, Irina A., Cohen, Ira S., Mathias, Richard T., Kim, Jeremy H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2374
container_issue 11
container_start_page 2364
container_title Biophysical journal
container_volume 106
creator Gao, Junyuan
Sun, Xiurong
Potapova, Irina A.
Cohen, Ira S.
Mathias, Richard T.
Kim, Jeremy H.
description Transmural heterogeneities in Na/K pump current (IP), transient outward K+-current (Ito), and Ca2+-current (ICaL) play an important role in regulating electrical and contractile activities in the ventricular myocardium. Prior studies indicated angiotensin II (A2) may determine the transmural gradient in Ito, but the effects of A2 on IP and ICaL were unknown. In this study, myocytes were isolated from five muscle layers between epicardium and endocardium. We found a monotonic gradient in both Ip and Ito, with the lowest currents in ENDO. When AT1Rs were inhibited, EPI currents were unaffected, but ENDO currents increased, suggesting endogenous extracellular A2 inhibits both currents in ENDO. IP- and Ito-inhibition by A2 yielded essentially the same K0.5 values, so they may both be regulated by the same mechanism. A2/AT1R-mediated inhibition of IP or Ito or stimulation of ICaL persisted for hours in isolated myocytes, suggesting continuous autocrine secretion of A2 into a restricted diffusion compartment, like the T-system. Detubulation brought EPI IP to its low ENDO value and eliminated A2 sensitivity, so the T-system lumen may indeed be the restricted diffusion compartment. These studies showed that 33–50% of IP, 57–65% of Ito, and a significant fraction of ICaL reside in T-tubule membranes where they are transmurally regulated by autocrine secretion of A2 into the T-system lumen and activation of AT1Rs. Increased AT1R activation regulates each of these currents in a direction expected to increase contractility. Endogenous A2 activation of AT1Rs increases monotonically from EPI to ENDO in a manner similar to reported increases in passive tension when the ventricular chamber fills with blood. We therefore hypothesize load is the signal that regulates A2-activation of AT1Rs, which create a contractile gradient that matches the gradient in load.
doi_str_mv 10.1016/j.bpj.2014.04.042
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4052267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349514004603</els_id><sourcerecordid>1534100660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-e08c7baf8c09db0b8cefa19a024ec28427c8bcefd91c93dd03a594b54a5d13423</originalsourceid><addsrcrecordid>eNp9kdGK1DAUhoso7rj6AN5IwBtvOp6kaadRUIZB14UZvHD0NqTJqc3QNrNJujJP4SubMuuiXggHDuR8-Tn_-bPsOYUlBVq9Piyb42HJgPIlzMUeZAtacpYD1NXDbAEAVV5wUV5kT0I4AFBWAn2cXTBei4rScpH9XE_RaW9HJGtG7Ehih2SffzmFiANxLfmGY_RWT73yZHdy-hQxkI1HNfe9V2MYJq96cuWVsYkNs8i1G8-zo_PxDVmTHepOjTYMJDqyU1F3ZOOSsNLRJvaHjR3ZOmXeP80etaoP-OyuX2ZfP37Ybz7l289X15v1Ntd8JWKOUOtVo9pagzANNLXGVlGhgHHUrOZspesmvRlBtSiMgUKVgjclV6WhBWfFZfburHucmgGNnl2qXh69HZQ_Saes_Hsy2k5-d7eSQ8lYtUoCr-4EvLuZMEQ52KCx79WIbgqSlgWn6f4VJPTlP-jBTX5M9maqEhWIokgUPVPauxA8tvfLUJBz3PIgU9xyjlvCXLOLF3-6uP_xO98EvD0DmG55a9HLoFNKGo31qKM0zv5H_heN0r0e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1536960933</pqid></control><display><type>article</type><title>Autocrine A2 in the T-System of Ventricular Myocytes Creates Transmural Gradients in Ion Transport: A Mechanism to Match Contraction with Load?</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Gao, Junyuan ; Sun, Xiurong ; Potapova, Irina A. ; Cohen, Ira S. ; Mathias, Richard T. ; Kim, Jeremy H.</creator><creatorcontrib>Gao, Junyuan ; Sun, Xiurong ; Potapova, Irina A. ; Cohen, Ira S. ; Mathias, Richard T. ; Kim, Jeremy H.</creatorcontrib><description>Transmural heterogeneities in Na/K pump current (IP), transient outward K+-current (Ito), and Ca2+-current (ICaL) play an important role in regulating electrical and contractile activities in the ventricular myocardium. Prior studies indicated angiotensin II (A2) may determine the transmural gradient in Ito, but the effects of A2 on IP and ICaL were unknown. In this study, myocytes were isolated from five muscle layers between epicardium and endocardium. We found a monotonic gradient in both Ip and Ito, with the lowest currents in ENDO. When AT1Rs were inhibited, EPI currents were unaffected, but ENDO currents increased, suggesting endogenous extracellular A2 inhibits both currents in ENDO. IP- and Ito-inhibition by A2 yielded essentially the same K0.5 values, so they may both be regulated by the same mechanism. A2/AT1R-mediated inhibition of IP or Ito or stimulation of ICaL persisted for hours in isolated myocytes, suggesting continuous autocrine secretion of A2 into a restricted diffusion compartment, like the T-system. Detubulation brought EPI IP to its low ENDO value and eliminated A2 sensitivity, so the T-system lumen may indeed be the restricted diffusion compartment. These studies showed that 33–50% of IP, 57–65% of Ito, and a significant fraction of ICaL reside in T-tubule membranes where they are transmurally regulated by autocrine secretion of A2 into the T-system lumen and activation of AT1Rs. Increased AT1R activation regulates each of these currents in a direction expected to increase contractility. Endogenous A2 activation of AT1Rs increases monotonically from EPI to ENDO in a manner similar to reported increases in passive tension when the ventricular chamber fills with blood. We therefore hypothesize load is the signal that regulates A2-activation of AT1Rs, which create a contractile gradient that matches the gradient in load.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2014.04.042</identifier><identifier>PMID: 24896115</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ACE inhibitors ; Action Potentials ; Angiotensin II - metabolism ; Animals ; Biophysics ; Calcium ; Channels and Transporters ; Dogs ; Endocardium - cytology ; Endocardium - metabolism ; Endocardium - physiology ; Heart Ventricles - cytology ; Heart Ventricles - metabolism ; Ion Transport ; Membranes ; Myocardial Contraction ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - physiology ; Pericardium - cytology ; Pericardium - metabolism ; Pericardium - physiology ; Potassium - metabolism ; Potassium Channels - metabolism ; Sarcolemma - metabolism ; Ventricular Function</subject><ispartof>Biophysical journal, 2014-06, Vol.106 (11), p.2364-2374</ispartof><rights>2014 Biophysical Society</rights><rights>Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jun 3, 2014</rights><rights>2014 by the Biophysical Society. 2014 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-e08c7baf8c09db0b8cefa19a024ec28427c8bcefd91c93dd03a594b54a5d13423</citedby><cites>FETCH-LOGICAL-c479t-e08c7baf8c09db0b8cefa19a024ec28427c8bcefd91c93dd03a594b54a5d13423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052267/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2014.04.042$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27903,27904,45974,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24896115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Junyuan</creatorcontrib><creatorcontrib>Sun, Xiurong</creatorcontrib><creatorcontrib>Potapova, Irina A.</creatorcontrib><creatorcontrib>Cohen, Ira S.</creatorcontrib><creatorcontrib>Mathias, Richard T.</creatorcontrib><creatorcontrib>Kim, Jeremy H.</creatorcontrib><title>Autocrine A2 in the T-System of Ventricular Myocytes Creates Transmural Gradients in Ion Transport: A Mechanism to Match Contraction with Load?</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Transmural heterogeneities in Na/K pump current (IP), transient outward K+-current (Ito), and Ca2+-current (ICaL) play an important role in regulating electrical and contractile activities in the ventricular myocardium. Prior studies indicated angiotensin II (A2) may determine the transmural gradient in Ito, but the effects of A2 on IP and ICaL were unknown. In this study, myocytes were isolated from five muscle layers between epicardium and endocardium. We found a monotonic gradient in both Ip and Ito, with the lowest currents in ENDO. When AT1Rs were inhibited, EPI currents were unaffected, but ENDO currents increased, suggesting endogenous extracellular A2 inhibits both currents in ENDO. IP- and Ito-inhibition by A2 yielded essentially the same K0.5 values, so they may both be regulated by the same mechanism. A2/AT1R-mediated inhibition of IP or Ito or stimulation of ICaL persisted for hours in isolated myocytes, suggesting continuous autocrine secretion of A2 into a restricted diffusion compartment, like the T-system. Detubulation brought EPI IP to its low ENDO value and eliminated A2 sensitivity, so the T-system lumen may indeed be the restricted diffusion compartment. These studies showed that 33–50% of IP, 57–65% of Ito, and a significant fraction of ICaL reside in T-tubule membranes where they are transmurally regulated by autocrine secretion of A2 into the T-system lumen and activation of AT1Rs. Increased AT1R activation regulates each of these currents in a direction expected to increase contractility. Endogenous A2 activation of AT1Rs increases monotonically from EPI to ENDO in a manner similar to reported increases in passive tension when the ventricular chamber fills with blood. We therefore hypothesize load is the signal that regulates A2-activation of AT1Rs, which create a contractile gradient that matches the gradient in load.</description><subject>ACE inhibitors</subject><subject>Action Potentials</subject><subject>Angiotensin II - metabolism</subject><subject>Animals</subject><subject>Biophysics</subject><subject>Calcium</subject><subject>Channels and Transporters</subject><subject>Dogs</subject><subject>Endocardium - cytology</subject><subject>Endocardium - metabolism</subject><subject>Endocardium - physiology</subject><subject>Heart Ventricles - cytology</subject><subject>Heart Ventricles - metabolism</subject><subject>Ion Transport</subject><subject>Membranes</subject><subject>Myocardial Contraction</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Pericardium - cytology</subject><subject>Pericardium - metabolism</subject><subject>Pericardium - physiology</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels - metabolism</subject><subject>Sarcolemma - metabolism</subject><subject>Ventricular Function</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kdGK1DAUhoso7rj6AN5IwBtvOp6kaadRUIZB14UZvHD0NqTJqc3QNrNJujJP4SubMuuiXggHDuR8-Tn_-bPsOYUlBVq9Piyb42HJgPIlzMUeZAtacpYD1NXDbAEAVV5wUV5kT0I4AFBWAn2cXTBei4rScpH9XE_RaW9HJGtG7Ehih2SffzmFiANxLfmGY_RWT73yZHdy-hQxkI1HNfe9V2MYJq96cuWVsYkNs8i1G8-zo_PxDVmTHepOjTYMJDqyU1F3ZOOSsNLRJvaHjR3ZOmXeP80etaoP-OyuX2ZfP37Ybz7l289X15v1Ntd8JWKOUOtVo9pagzANNLXGVlGhgHHUrOZspesmvRlBtSiMgUKVgjclV6WhBWfFZfburHucmgGNnl2qXh69HZQ_Saes_Hsy2k5-d7eSQ8lYtUoCr-4EvLuZMEQ52KCx79WIbgqSlgWn6f4VJPTlP-jBTX5M9maqEhWIokgUPVPauxA8tvfLUJBz3PIgU9xyjlvCXLOLF3-6uP_xO98EvD0DmG55a9HLoFNKGo31qKM0zv5H_heN0r0e</recordid><startdate>20140603</startdate><enddate>20140603</enddate><creator>Gao, Junyuan</creator><creator>Sun, Xiurong</creator><creator>Potapova, Irina A.</creator><creator>Cohen, Ira S.</creator><creator>Mathias, Richard T.</creator><creator>Kim, Jeremy H.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140603</creationdate><title>Autocrine A2 in the T-System of Ventricular Myocytes Creates Transmural Gradients in Ion Transport: A Mechanism to Match Contraction with Load?</title><author>Gao, Junyuan ; Sun, Xiurong ; Potapova, Irina A. ; Cohen, Ira S. ; Mathias, Richard T. ; Kim, Jeremy H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-e08c7baf8c09db0b8cefa19a024ec28427c8bcefd91c93dd03a594b54a5d13423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ACE inhibitors</topic><topic>Action Potentials</topic><topic>Angiotensin II - metabolism</topic><topic>Animals</topic><topic>Biophysics</topic><topic>Calcium</topic><topic>Channels and Transporters</topic><topic>Dogs</topic><topic>Endocardium - cytology</topic><topic>Endocardium - metabolism</topic><topic>Endocardium - physiology</topic><topic>Heart Ventricles - cytology</topic><topic>Heart Ventricles - metabolism</topic><topic>Ion Transport</topic><topic>Membranes</topic><topic>Myocardial Contraction</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Pericardium - cytology</topic><topic>Pericardium - metabolism</topic><topic>Pericardium - physiology</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels - metabolism</topic><topic>Sarcolemma - metabolism</topic><topic>Ventricular Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Junyuan</creatorcontrib><creatorcontrib>Sun, Xiurong</creatorcontrib><creatorcontrib>Potapova, Irina A.</creatorcontrib><creatorcontrib>Cohen, Ira S.</creatorcontrib><creatorcontrib>Mathias, Richard T.</creatorcontrib><creatorcontrib>Kim, Jeremy H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Junyuan</au><au>Sun, Xiurong</au><au>Potapova, Irina A.</au><au>Cohen, Ira S.</au><au>Mathias, Richard T.</au><au>Kim, Jeremy H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autocrine A2 in the T-System of Ventricular Myocytes Creates Transmural Gradients in Ion Transport: A Mechanism to Match Contraction with Load?</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2014-06-03</date><risdate>2014</risdate><volume>106</volume><issue>11</issue><spage>2364</spage><epage>2374</epage><pages>2364-2374</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Transmural heterogeneities in Na/K pump current (IP), transient outward K+-current (Ito), and Ca2+-current (ICaL) play an important role in regulating electrical and contractile activities in the ventricular myocardium. Prior studies indicated angiotensin II (A2) may determine the transmural gradient in Ito, but the effects of A2 on IP and ICaL were unknown. In this study, myocytes were isolated from five muscle layers between epicardium and endocardium. We found a monotonic gradient in both Ip and Ito, with the lowest currents in ENDO. When AT1Rs were inhibited, EPI currents were unaffected, but ENDO currents increased, suggesting endogenous extracellular A2 inhibits both currents in ENDO. IP- and Ito-inhibition by A2 yielded essentially the same K0.5 values, so they may both be regulated by the same mechanism. A2/AT1R-mediated inhibition of IP or Ito or stimulation of ICaL persisted for hours in isolated myocytes, suggesting continuous autocrine secretion of A2 into a restricted diffusion compartment, like the T-system. Detubulation brought EPI IP to its low ENDO value and eliminated A2 sensitivity, so the T-system lumen may indeed be the restricted diffusion compartment. These studies showed that 33–50% of IP, 57–65% of Ito, and a significant fraction of ICaL reside in T-tubule membranes where they are transmurally regulated by autocrine secretion of A2 into the T-system lumen and activation of AT1Rs. Increased AT1R activation regulates each of these currents in a direction expected to increase contractility. Endogenous A2 activation of AT1Rs increases monotonically from EPI to ENDO in a manner similar to reported increases in passive tension when the ventricular chamber fills with blood. We therefore hypothesize load is the signal that regulates A2-activation of AT1Rs, which create a contractile gradient that matches the gradient in load.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24896115</pmid><doi>10.1016/j.bpj.2014.04.042</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2014-06, Vol.106 (11), p.2364-2374
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4052267
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects ACE inhibitors
Action Potentials
Angiotensin II - metabolism
Animals
Biophysics
Calcium
Channels and Transporters
Dogs
Endocardium - cytology
Endocardium - metabolism
Endocardium - physiology
Heart Ventricles - cytology
Heart Ventricles - metabolism
Ion Transport
Membranes
Myocardial Contraction
Myocytes, Cardiac - cytology
Myocytes, Cardiac - metabolism
Myocytes, Cardiac - physiology
Pericardium - cytology
Pericardium - metabolism
Pericardium - physiology
Potassium - metabolism
Potassium Channels - metabolism
Sarcolemma - metabolism
Ventricular Function
title Autocrine A2 in the T-System of Ventricular Myocytes Creates Transmural Gradients in Ion Transport: A Mechanism to Match Contraction with Load?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autocrine%20A2%20in%20the%20T-System%20of%20Ventricular%20Myocytes%20Creates%20Transmural%20Gradients%20in%20Ion%20Transport:%20A%20Mechanism%20to%20Match%20Contraction%20with%20Load?&rft.jtitle=Biophysical%20journal&rft.au=Gao,%20Junyuan&rft.date=2014-06-03&rft.volume=106&rft.issue=11&rft.spage=2364&rft.epage=2374&rft.pages=2364-2374&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2014.04.042&rft_dat=%3Cproquest_pubme%3E1534100660%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1536960933&rft_id=info:pmid/24896115&rft_els_id=S0006349514004603&rfr_iscdi=true