Neurons Have an Active Glycogen Metabolism that Contributes to Tolerance to Hypoxia
Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies,...
Gespeichert in:
Veröffentlicht in: | Journal of cerebral blood flow and metabolism 2014-06, Vol.34 (6), p.945-955 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 955 |
---|---|
container_issue | 6 |
container_start_page | 945 |
container_title | Journal of cerebral blood flow and metabolism |
container_volume | 34 |
creator | Saez, Isabel Duran, Jordi Sinadinos, Christopher Beltran, Antoni Yanes, Oscar Tevy, María F Martínez-Pons, Carlos Milán, Marco Guinovart, Joan J |
description | Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen Phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. |
doi_str_mv | 10.1038/jcbfm.2014.33 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4050236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1038_jcbfm.2014.33</sage_id><sourcerecordid>1534818968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-6f53634a7025d1ede01300a02eca7a602592e0fa057da7fb6b77675420f390283</originalsourceid><addsrcrecordid>eNqNkc1vEzEQxS0EomngyBWtxKWqtGFsrz_2glRF0CAVOFAkbpbXmU032l0H21uR_x6nKVVBHDjZHv_03sw8Ql5RWFDg-u3WNe2wYECrBedPyIwKUZcKqHxKZsAULaXS30_IaYxbANBciOfkhFVC1lLXM_L1M07Bj7FY2Vss7FhcuNTl22W_d36DY_EJk21838WhSDc2FUs_ptA1U8JYJF9c-x6DHR0eHqv9zv_s7AvyrLV9xJf355x8-_D-erkqr75cflxeXJWu0jyVshVc8soqYGJNcY1AOYAFhs4qK3O1ZgitBaHWVrWNbJSSSlQMWl4D03xO3h11d1Mz4Nph7sz2Zhe6wYa98bYzf_6M3Y3Z-FtTgQCWvefk7F4g-B8TxmSGLjrsezuin6Khglea6ryp_0FpLYQWIqNv_kK3fgpj3sQdlb1rOHiXR8oFH2PA9qFvCuaQrLlL1hySNZxn_vXjYR_o31Fm4PwIRLvBR5b_VPsFmeqsgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531050906</pqid></control><display><type>article</type><title>Neurons Have an Active Glycogen Metabolism that Contributes to Tolerance to Hypoxia</title><source>MEDLINE</source><source>EZB Free E-Journals</source><source>SAGE Complete</source><source>PubMed Central</source><creator>Saez, Isabel ; Duran, Jordi ; Sinadinos, Christopher ; Beltran, Antoni ; Yanes, Oscar ; Tevy, María F ; Martínez-Pons, Carlos ; Milán, Marco ; Guinovart, Joan J</creator><creatorcontrib>Saez, Isabel ; Duran, Jordi ; Sinadinos, Christopher ; Beltran, Antoni ; Yanes, Oscar ; Tevy, María F ; Martínez-Pons, Carlos ; Milán, Marco ; Guinovart, Joan J</creatorcontrib><description>Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen Phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress.</description><identifier>ISSN: 0271-678X</identifier><identifier>ISSN: 1559-7016</identifier><identifier>EISSN: 1559-7016</identifier><identifier>DOI: 10.1038/jcbfm.2014.33</identifier><identifier>PMID: 24569689</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Animals ; Cell Hypoxia - genetics ; Cells, Cultured ; Gene Expression Regulation, Enzymologic - genetics ; Glycogen - genetics ; Glycogen - metabolism ; Glycogen Phosphorylase, Brain Form - biosynthesis ; Glycogen Phosphorylase, Brain Form - genetics ; Mice ; Mice, Transgenic ; Nerve Tissue Proteins - biosynthesis ; Nerve Tissue Proteins - genetics ; Neurons - cytology ; Neurons - metabolism ; Original</subject><ispartof>Journal of cerebral blood flow and metabolism, 2014-06, Vol.34 (6), p.945-955</ispartof><rights>2014 ISCBFM</rights><rights>Copyright Nature Publishing Group Jun 2014</rights><rights>Copyright © 2014 International Society for Cerebral Blood Flow & Metabolism, Inc. 2014 International Society for Cerebral Blood Flow & Metabolism, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-6f53634a7025d1ede01300a02eca7a602592e0fa057da7fb6b77675420f390283</citedby><cites>FETCH-LOGICAL-c483t-6f53634a7025d1ede01300a02eca7a602592e0fa057da7fb6b77675420f390283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050236/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050236/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,21798,27901,27902,43597,43598,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24569689$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saez, Isabel</creatorcontrib><creatorcontrib>Duran, Jordi</creatorcontrib><creatorcontrib>Sinadinos, Christopher</creatorcontrib><creatorcontrib>Beltran, Antoni</creatorcontrib><creatorcontrib>Yanes, Oscar</creatorcontrib><creatorcontrib>Tevy, María F</creatorcontrib><creatorcontrib>Martínez-Pons, Carlos</creatorcontrib><creatorcontrib>Milán, Marco</creatorcontrib><creatorcontrib>Guinovart, Joan J</creatorcontrib><title>Neurons Have an Active Glycogen Metabolism that Contributes to Tolerance to Hypoxia</title><title>Journal of cerebral blood flow and metabolism</title><addtitle>J Cereb Blood Flow Metab</addtitle><description>Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen Phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress.</description><subject>Animals</subject><subject>Cell Hypoxia - genetics</subject><subject>Cells, Cultured</subject><subject>Gene Expression Regulation, Enzymologic - genetics</subject><subject>Glycogen - genetics</subject><subject>Glycogen - metabolism</subject><subject>Glycogen Phosphorylase, Brain Form - biosynthesis</subject><subject>Glycogen Phosphorylase, Brain Form - genetics</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Nerve Tissue Proteins - biosynthesis</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Original</subject><issn>0271-678X</issn><issn>1559-7016</issn><issn>1559-7016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkc1vEzEQxS0EomngyBWtxKWqtGFsrz_2glRF0CAVOFAkbpbXmU032l0H21uR_x6nKVVBHDjZHv_03sw8Ql5RWFDg-u3WNe2wYECrBedPyIwKUZcKqHxKZsAULaXS30_IaYxbANBciOfkhFVC1lLXM_L1M07Bj7FY2Vss7FhcuNTl22W_d36DY_EJk21838WhSDc2FUs_ptA1U8JYJF9c-x6DHR0eHqv9zv_s7AvyrLV9xJf355x8-_D-erkqr75cflxeXJWu0jyVshVc8soqYGJNcY1AOYAFhs4qK3O1ZgitBaHWVrWNbJSSSlQMWl4D03xO3h11d1Mz4Nph7sz2Zhe6wYa98bYzf_6M3Y3Z-FtTgQCWvefk7F4g-B8TxmSGLjrsezuin6Khglea6ryp_0FpLYQWIqNv_kK3fgpj3sQdlb1rOHiXR8oFH2PA9qFvCuaQrLlL1hySNZxn_vXjYR_o31Fm4PwIRLvBR5b_VPsFmeqsgQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Saez, Isabel</creator><creator>Duran, Jordi</creator><creator>Sinadinos, Christopher</creator><creator>Beltran, Antoni</creator><creator>Yanes, Oscar</creator><creator>Tevy, María F</creator><creator>Martínez-Pons, Carlos</creator><creator>Milán, Marco</creator><creator>Guinovart, Joan J</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20140601</creationdate><title>Neurons Have an Active Glycogen Metabolism that Contributes to Tolerance to Hypoxia</title><author>Saez, Isabel ; Duran, Jordi ; Sinadinos, Christopher ; Beltran, Antoni ; Yanes, Oscar ; Tevy, María F ; Martínez-Pons, Carlos ; Milán, Marco ; Guinovart, Joan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-6f53634a7025d1ede01300a02eca7a602592e0fa057da7fb6b77675420f390283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Cell Hypoxia - genetics</topic><topic>Cells, Cultured</topic><topic>Gene Expression Regulation, Enzymologic - genetics</topic><topic>Glycogen - genetics</topic><topic>Glycogen - metabolism</topic><topic>Glycogen Phosphorylase, Brain Form - biosynthesis</topic><topic>Glycogen Phosphorylase, Brain Form - genetics</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Nerve Tissue Proteins - biosynthesis</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saez, Isabel</creatorcontrib><creatorcontrib>Duran, Jordi</creatorcontrib><creatorcontrib>Sinadinos, Christopher</creatorcontrib><creatorcontrib>Beltran, Antoni</creatorcontrib><creatorcontrib>Yanes, Oscar</creatorcontrib><creatorcontrib>Tevy, María F</creatorcontrib><creatorcontrib>Martínez-Pons, Carlos</creatorcontrib><creatorcontrib>Milán, Marco</creatorcontrib><creatorcontrib>Guinovart, Joan J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cerebral blood flow and metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saez, Isabel</au><au>Duran, Jordi</au><au>Sinadinos, Christopher</au><au>Beltran, Antoni</au><au>Yanes, Oscar</au><au>Tevy, María F</au><au>Martínez-Pons, Carlos</au><au>Milán, Marco</au><au>Guinovart, Joan J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurons Have an Active Glycogen Metabolism that Contributes to Tolerance to Hypoxia</atitle><jtitle>Journal of cerebral blood flow and metabolism</jtitle><addtitle>J Cereb Blood Flow Metab</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>34</volume><issue>6</issue><spage>945</spage><epage>955</epage><pages>945-955</pages><issn>0271-678X</issn><issn>1559-7016</issn><eissn>1559-7016</eissn><abstract>Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen Phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>24569689</pmid><doi>10.1038/jcbfm.2014.33</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-678X |
ispartof | Journal of cerebral blood flow and metabolism, 2014-06, Vol.34 (6), p.945-955 |
issn | 0271-678X 1559-7016 1559-7016 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4050236 |
source | MEDLINE; EZB Free E-Journals; SAGE Complete; PubMed Central |
subjects | Animals Cell Hypoxia - genetics Cells, Cultured Gene Expression Regulation, Enzymologic - genetics Glycogen - genetics Glycogen - metabolism Glycogen Phosphorylase, Brain Form - biosynthesis Glycogen Phosphorylase, Brain Form - genetics Mice Mice, Transgenic Nerve Tissue Proteins - biosynthesis Nerve Tissue Proteins - genetics Neurons - cytology Neurons - metabolism Original |
title | Neurons Have an Active Glycogen Metabolism that Contributes to Tolerance to Hypoxia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurons%20Have%20an%20Active%20Glycogen%20Metabolism%20that%20Contributes%20to%20Tolerance%20to%20Hypoxia&rft.jtitle=Journal%20of%20cerebral%20blood%20flow%20and%20metabolism&rft.au=Saez,%20Isabel&rft.date=2014-06-01&rft.volume=34&rft.issue=6&rft.spage=945&rft.epage=955&rft.pages=945-955&rft.issn=0271-678X&rft.eissn=1559-7016&rft_id=info:doi/10.1038/jcbfm.2014.33&rft_dat=%3Cproquest_pubme%3E1534818968%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531050906&rft_id=info:pmid/24569689&rft_sage_id=10.1038_jcbfm.2014.33&rfr_iscdi=true |